uτ-Convergence in locally solid vector lattices

Dabboorasad, Yousef A M
We say that a net (xα) in a locally solid vector lattice (X,τ) is uτ-convergent to a vector x ∈ X if


um-Topology in multi-normed vector lattices
Dabboorasad, Y. A.; Emelyanov, Eduard; Marabeh, M. A. A. (2018-04-01)
Let be a separating family of lattice seminorms on a vector lattice X, then is called a multi-normed vector lattice (or MNVL). We write if for all . A net in an MNVL is said to be unbounded m-convergent (or um-convergent) to x if for all . um-Convergence generalizes un-convergence (Deng et al. in Positivity 21:963-974, 2017; KandiAc et al. in J Math Anal Appl 451:259-279, 2017) and uaw-convergence (Zabeti in Positivity, 2017. doi:10.1007/s11117-017-0524-7), and specializes up-convergence (AydA +/- n et al. ...
o tau-Continuous, Lebesgue, KB, and Levi Operators Between Vector Lattices and Topological Vector Spaces
Alpay, Safak; Emelyanov, Eduard; Gorokhova, Svetlana (2022-06-01)
We investigate o tau-continuous/bounded/compact and Lebesgue operators from vector lattices to topological vector spaces; the Kantorovich-Banach operators between locally solid lattices and topological vector spaces; and the Levi operators from locally solid lattices to vector lattices. The main idea of operator versions of notions related to vector lattices lies in redistributing topological and order properties of a topological vector lattice between the domain and range of an operator under investigation...
ERKURŞUN ÖZCAN, NAZİFE; Gezer, Niyazi Anıl; Zabeti, Omid (2019-01-01)
Suppose X is a locally solid vector lattice. It is known that there are several non-equivalent spaces of bounded operators on X. In this paper, we consider some situations under which these classes of bounded operators form locally solid vector lattices. In addition, we generalize some notions of uaw-Dunford-Pettis operators and uaw-compact operators defined on a Banach lattice to general theme of locally solid vector lattices. With the aid of appropriate topologies, we investigate some relations between to...
Bibounded uo-convergence and b-property in vector lattices
Alpay, Safak; Emelyanov, Eduard; Gorokhova, Svetlana (2021-01-01)
We define bidual bounded uo-convergence in vector lattices and investigate relations between this convergence and b-property. We prove that for a regular Riesz dual system ⟨ X, X∼⟩ , X has b-property if and only if the order convergence in X agrees with the order convergence in X∼ ∼.
Invariant subspaces for positive operators acting on a Banach space with Markushevich basis
Ercan, Z; Onal, S (Springer Science and Business Media LLC, 2004-06-01)
We introduce 'weak quasinilpotence' for operators. Then, by substituting 'Markushevich basis' and 'weak quasinilpotence at a nonzero vector' for 'Schauder basis' and 'quasinilpotence at a nonzero vector', respectively, we answer a question on the invariant subspaces of positive operators in [ 3].
Citation Formats
Y. A. M. Dabboorasad, “uτ-Convergence in locally solid vector lattices,” Ph.D. - Doctoral Program, Middle East Technical University, 2018.