Nonstandard hulls of lattice-normed ordered vector spaces

2018-01-01
Aydin, Abdullah
Gorokhova, Svetlana
Gul, Hasan
Nonstandard hulls of a vector lattice were introduced and studied in many papers. Recently, these notions were extended to ordered vector spaces. In the present paper, following the construction of associated Banach-Kantorovich space due to Emelyanov, we describe and investigate the nonstandard hull of a lattice-normed space, which is the foregoing generalization of Luxemburg's nonstandard hull of a normed space.
TURKISH JOURNAL OF MATHEMATICS

Suggestions

Nonstandard hulls of ordered vector spaces
Emelyanov, Eduard (2016-06-01)
This paper undertakes the investigation of ordered vector spaces by applying nonstandard analysis. We introduce and study two types of nonstandard hulls of ordered vector spaces. Norm-nonstandard hulls of ordered Banach spaces are also investigated.
um-Topology in multi-normed vector lattices
Dabboorasad, Y. A.; Emelyanov, Eduard; Marabeh, M. A. A. (2018-04-01)
Let be a separating family of lattice seminorms on a vector lattice X, then is called a multi-normed vector lattice (or MNVL). We write if for all . A net in an MNVL is said to be unbounded m-convergent (or um-convergent) to x if for all . um-Convergence generalizes un-convergence (Deng et al. in Positivity 21:963-974, 2017; KandiAc et al. in J Math Anal Appl 451:259-279, 2017) and uaw-convergence (Zabeti in Positivity, 2017. doi:10.1007/s11117-017-0524-7), and specializes up-convergence (AydA +/- n et al. ...
uτ-Convergence in locally solid vector lattices
Dabboorasad, Yousef A M; Emel’yanov, Eduard; Department of Mathematics (2018)
We say that a net (xα) in a locally solid vector lattice (X,τ) is uτ-convergent to a vector x ∈ X if
Archimedean Cones in Vector Spaces
Emelyanov, Eduard (2017-01-01)
In the case of an ordered vector space (briefly, OVS) with an order unit, the Archimedeanization method was recently developed by Paulsen and Tomforde [4]. We present a general version of the Archimedeanization which covers arbitrary OVS. Also we show that an OVS (V, V+) is Archimedean if and only if inf(tau is an element of{tau}), y is an element of L(x(tau) - y) = 0 for any bounded below decreasing net {x(tau)}(tau) in V, where L is the collection of all lower bounds of {x(tau)}(tau), and give characteriz...
ON GENERALIZED LOCAL SYMMETRIES OF THE SO(2,1) INVARIANT NONLINEAR SIGMA-MODEL
BASKAL, S; ERIS, A; SATIR, A (1994-12-19)
The symmetries and associated conservation laws of the SO(2,1) invariant non-linear sigma model equations in 1+1 dimensions are investigated. An infinite family of generalized local symmetries is presented and the uniqueness of these solutions is discussed.
Citation Formats
A. Aydin, S. Gorokhova, and H. Gul, “Nonstandard hulls of lattice-normed ordered vector spaces,” TURKISH JOURNAL OF MATHEMATICS, pp. 155–163, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/66588.