Impact of Rescaling Approaches in Simple Fusion of Soil Moisture Products

In this study, the impact of various rescaling approaches in the framework of data fusion is explored. Four different soil moisture products (Advanced Scatterometer; Advanced Microwave Scanning Radiometer for EOS, AMSR-E; Antecedent Precipitation Index; and Global Land Data Assimilation System-NOAH) are fused. The systematic differences between products are removed before the fusion utilizing various rescaling approaches focusing on different methods (regression, variance/cumulative distribution function (CDF) matching, multivariate adaptive regression splines, and support vector machines based), stationarity assumptions (constant or time-varying rescaling coefficients), and time-frequency techniques (periodic or nonperiodic high- and low-frequency components). Given that statistical descriptions (e.g., standard deviation and correlation coefficient) of reference data sets are utilized in rescaling approaches, the precision of the selected reference data set also impacts the final fused product precision. Experiments are validated over 542 soil moisture monitoring sites selected from the International Soil Moisture Network data sets between 2007 and 2011. Overall, results highlight the importance of reference data set selection-particularly that a more precise reference product yields a higher precision fused soil moisture product. This conclusion is sensitive neither to the number of fused products nor the rescaling procedure. Among rescaling approaches, the precision of fused products is most affected by the choice of rescaling stationary assumption and time-frequency decomposition technique. Variations in rescaling methods have only a small impact on the precision of pair fused products. In contrast, utilizing a time-varying stationary assumption and nonperiodic decomposition technique produces correlation improvements of 0.07 [-] and 0.02 [-], respectively, versus the other widely implemented rescaling approaches.


An information theoretic approach to select alternate subsets of predictors for data-driven hydrological models
TAORMİNA, RİCCARDO; GALELLİ, STEFANO; Karakaya, Gülşah; Ahipasaoglu, S. D. (Elsevier BV, 2016-11-01)
This work investigates the uncertainty associated to the presence of multiple subsets of predictors yielding data-driven models with the same, or similar, predictive accuracy. To handle this uncertainty effectively, we introduce a novel input variable selection algorithm, called Wrapper for Quasi Equally Informative Subset Selection (W-QEISS), specifically conceived to identify all alternate subsets of predictors in a given dataset. The search process is based on a four-objective optimization problem that m...
ULA, TA (Elsevier BV, 1992-12-01)
Certain aspects of data generation are studied through multivariate autoregressive (AR) models. The main emphasis is on the preservation of certain desired moments and the effect of initial values on these moments. The problem of preservation of moments is approached in a nontraditional way by starting with the initial values. For this purpose, general AR processes with a random start and with time-varying parameters are introduced to lay a foundation for the analysis of all types of AR processes, including...
Multiple-criteria calibration of a distributed watershed model using spatial regularization and response signatures
Pokhrel, Prafulla; Yılmaz, Koray Kamil; Gupta, Hoshin V. (Elsevier BV, 2012-02-08)
This paper explores the use of a semi-automated multiple-criteria calibration approach for estimating the parameters of the spatially distributed HL-DHM model to the Blue River basin, Oklahoma. The study was performed in the context of Phase 2 of the DMIP project organized by the Hydrology Lab of the NWS. To deal with the problem of ill conditioning, we employ a regularization approach that constrains the search space using information contained in a priori estimates of the spatially distributed parameter f...
Comparison of prognostic and diagnostic surface flux modeling approaches over the Nile River basin
Yılmaz, Mustafa Tuğrul; Zaitchik, Ben; Hain, Chris R.; Crow, Wade T.; Ozdogan, Mutlu; Chun, Jong Ahn; Evans, Jason (American Geophysical Union (AGU), 2014-01-01)
Regional evapotranspiration (ET) can be estimated using diagnostic remote sensing models, generally based on principles of energy balance closure, or with spatially distributed prognostic models that simultaneously balance both energy and water budgets over landscapes using predictive equations for land surface temperature and moisture states. Each modeling approach has complementary advantages and disadvantages, and in combination they can be used to obtain more accurate ET estimates over a variety of land...
Twenty-three unsolved problems in hydrology (UPH) - a community perspective
Bloeschl, Gunter; et. al. (Informa UK Limited, 2019-07-01)
This paper is the outcome of a community initiative to identify major unsolved scientific problems in hydrology motivated by a need for stronger harmonisation of research efforts. The procedure involved a public consultation through online media, followed by two workshops through which a large number of potential science questions were collated, prioritised, and synthesised. In spite of the diversity of the participants (230 scientists in total), the process revealed much about community priorities and the ...
Citation Formats
M. H. Afshar and M. T. Yılmaz, “Impact of Rescaling Approaches in Simple Fusion of Soil Moisture Products,” WATER RESOURCES RESEARCH, pp. 7804–7825, 2019, Accessed: 00, 2020. [Online]. Available: