Nonlinear viscoelastic material property estimation of lower extremity residual limb tissues

2004-04-01
Axisymmetric nonlinear finite-element analysis was used to simulate force-relaxation and creep data obtained during in vivo indentation of the residual limb sofa tissues of six individuals with trans-tibial amputation [1]. The finite-element models facilitated estimation of an appropriate set of nonlinear viscoelastic material coefficients of extended James-Green-Simpson material formulation for bulk soft tissue at discrete, clinically relevant test locations. The results indicate that over 90% of the experimental data call be simulated using the two-term viscoelastic Prony series extension of James-Green-Simpson material formulation. This phenomenological material formulation could not, however, predict the creep response from relaxation experiments, nor the relaxation response from creep experiments [2-5]. The estimated material coefficients varied with test location and subject indicating that these coefficients cannot be readily extrapolated to other sites or individuals.
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME

Suggestions

ANALYTIC AND SEMIANALYTIC SOLUTIONS IN ELECTRICAL-IMPEDANCE TOMOGRAPHY .1. 2-DIMENSIONAL PROBLEMS
PIDCOCK, MK; Kuzuoğlu, Mustafa; Leblebicioğlu, Mehmet Kemal (IOP Publishing, 1995-05-01)
We give analytic and semi-analytic solutions to a number of problems which are related to the image reconstruction problem of electrical impedance tomography (EIT) in two dimensions.
Composite clinoptilolite/PCL-PEG-PCL scaffolds for bone regeneration: In vitro and in vivo evaluation
Pazarçeviren, Ahmet Engin; Altunbas, Korhan; Yaprakci, Volkan; Erdemli, Ozge; Keskin, Dilek; Tezcaner, Ayşen (Wiley, 2020-01-01)
In this study, clinoptilolite (CLN) was employed as a reinforcement in a polymer-based composite scaffold in bone tissue engineering and evaluated in vivo for the first time. Highly porous, mechanically stable, and osteogenic CLN/PCL-PEG-PCL (CLN/PCEC) scaffolds were fabricated with modified particulate leaching/compression molding technique with varying CLN contents. We hypothesized that CLN reinforcement in a composite scaffold will improve bone regeneration and promote repair. Therefore, the scaffolds we...
Evaluation of multivariate adaptive non-parametric reduced-order model for solving the inverse electrocardiography problem: a simulation study
Onak, Onder Nazim; Serinağaoğlu Doğrusöz, Yeşim; Weber, Gerhard Wilhelm (Springer Science and Business Media LLC, 2019-05-01)
In the inverse electrocardiography (ECG) problem, the goal is to reconstruct the heart's electrical activity from multichannel body surface potentials and a mathematical model of the torso. Over the years, researchers have employed various approaches to solve this ill-posed problem including regularization, optimization, and statistical estimation. It is still a topic of interest especially for researchers and clinicians whose goal is to adopt this technique in clinical applications. Among the wide range of...
ANALYTIC AND SEMIANALYTIC SOLUTIONS IN ELECTRICAL-IMPEDANCE TOMOGRAPHY .2. 3-DIMENSIONAL PROBLEMS
PIDCOCK, MK; KUZUOGLU, M; Leblebicioğlu, Mehmet Kemal (IOP Publishing, 1995-05-01)
We give analytic and semi-analytic solutions to a number of problems which are related to the image reconstruction problem of electrical impedance tomography (EIT) in three dimensions.
IMPROVED DYNAMIC-MODEL OF THE HUMAN KNEE-JOINT AND ITS RESPONSE TO IMPACT LOADING ON THE LOWER LEG
ENGIN, AE; Tümer, Sami Turgut (ASME International, 1993-05-01)
Almost a decade ago, three-dimensional formulation for the dynamic modeling of an articulating human joint was introduced. Two-dimensional version of this fomulation was subsequently applied to the knee joint. However, because of the iterative nature of the solution technique, this model cannot handle impact conditions. In this paper, alternative solution methods are introduced which enable investigation of the response of the human knee to impact loading on the lower leg via an anatomically based model. In...
Citation Formats
E. Tönük, “Nonlinear viscoelastic material property estimation of lower extremity residual limb tissues,” JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, pp. 289–300, 2004, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/48176.