Adsorption of oxygen and hydrogen on stepped Si(100) surface

1999-06-01
We have investigated the electronic band structure of oxygen and hydrogen adsorbed stepped Si(100) surface using the empirical tight binding method (ETB). The total electronic energies of the O-stepped and H-stepped Si(100) systems are calculated with a limited number of oxygen and hydrogen atoms separately to find out the most probable adsorption sites of the adatoms in the initial stage of oxidation and hydrogenation.

Suggestions

Adsorption of hydrogen and oxygen on single and double layer stepped Si(100) surfaces
Salman, SA; Katırcıoğlu, Şenay; Erkoc, S (2001-06-30)
We have investigated the electronic band structure of hydrogen and oxygen adsorbed single and double layer stepped Si(100) surfaces by Empirical Tight Binding (ETB) method. The total electronic energies of the H,O-S-A, D-A, D-B type stepped Si(100) systems are calculated with limited number of hydrogen and oxygen atoms separately to find out the most probable adsorption sites of the adatoms in the initial stage of hydrogenation and oxidation.
Electronic band structure of stepped Si(100) surfaces
Salman, SA; Katırcıoğlu, Şenay; Erkoc, S (2001-02-01)
We have investigated the electronic band structure of five different stepped Si(100) surfaces by the empirical tight binding (ETB) method. It has been found that the interaction states have approximately the same energy values for the stepped surfaces with a similar dimer bond nature on the terraces. The single layer stepped models show different density-of-states features than the double layer stepped models.
SIMULATION CALCULATIONS FOR GOLD CLUSTERS ON THE GAAS(110) SURFACE
Erkoç, Şakir; HALICIOGLU, T; TILLER, WA (1992-08-15)
Energy- and structure-related properties of small gold clusters deposited on the GaAs(110) surface were investigated in this work using a molecular dynamics procedure. A recently developed potential energy function based on two- and three-body interactions was employed in calculating energies and forces. These calculations produced some consistent results with experiments. The three-body interactions involving As atoms in particular, were found to play an important role in determining favorable binding site...
Energetics of arsenic terminated GaAs(001) surfaces
Erkoç, Şakir; Kokten, H (2000-09-01)
We have investigated systematically the energetics of arsenic terminated GaAs(001) surfaces, Available surface models proposed in the literature have been considered, and relaxation and surface energies of each model have been calculated using an empirical many-body potential energy function comprising two and three-body atomic interactions.
Adsorption calorimetry in supported catalyst characterization : adsorption structure sensitivity on pt(y-Al2o3
Üner, Murat; Üner, Deniz; Department of Chemical Engineering (2004)
In this study, the structure sensitivity of hydrogen, oxygen and carbon monoxide adsorption was investigated by changing the metal particle size of Pt/Al2O3 catalysts. 2 % Pt/Al2O3 catalysts were prepared by incipient wetness method; the particle size of the catalysts was manipulated by calcining at different temperatures. The dispersion values for the catalysts calcined in air at 683K, 773K and 823K were measured as 0.62, 0.20 and 0.03 respectively. The differential heats of adsorption of hydrogen, carbon ...
Citation Formats
S. Salman and Ş. Katırcıoğlu, “Adsorption of oxygen and hydrogen on stepped Si(100) surface,” PHYSICA STATUS SOLIDI B-BASIC RESEARCH, pp. 333–341, 1999, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/48298.