Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Microstructure characterization of heat-treated ferromagnetic steels by magnetic barkhausen noise method
Date
2019-01-01
Author
Gür, Cemil Hakan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
245
views
0
downloads
Cite This
This paper presents non-destructive evaluation of microstructures of heat treated steels by the Magnetic Barkhausen Noise (MBN) method. Various steel specimens having different microstructures were produced by appropriate heat treatments. All specimens were characterized by metallographic examinations, hardness and MBN measurements. The results showed that MBN parameters are highly sensitive to the variations in the microstructure, and this method is a promising candidate for practical non-destructive characterization of heat treated steels.
Subject Keywords
Steel
,
Heat treatment
,
Microstructure
,
Non-destructive characterization
,
Magnetic barkhausen noise
URI
https://hdl.handle.net/11511/48352
DOI
https://doi.org/10.11159/mmme19.121
Collections
Department of Metallurgical and Materials Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Microstructural characterization of hypoeutectoid steels quenched from the Ae1 - Ae3 intercritical temperature range by magnetic barkhausen noise technique
Boyacıoğlu, Beril; Gür, Cemil Hakan; Department of Metallurgical and Materials Engineering (2006)
This thesis aims to examine the possibility of using Magnetic Barkhausen Noise technique in characterizing the ferritic-martensitic microstructure of hypoeutectoid steels quenched from the intercritical temperature range. For this purpose, rectangular specimens were prepared from SAE 1020, 1040 and 1060 steels. The specimens were heated at different temperatures within the intercritical temperature range and then quenched into water. Microstructures of the specimens were characterized by metallographic exam...
Microstructure and nanomechanical behavior of sputtered CuNb thin films
Abboud, Mohammad; Motallebzadeh, Amir; Duygulu, Özgür; Maaß, Robert; Özerinç, Sezer (2021-09-01)
We report on the mechanical properties of Cu–Nb alloys produced by combinatorial magnetron sputtering. Depending on the composition, the microstructure is either fully amorphous (~30–65 at.% Cu), a dispersion of Cu crystallites in an amorphous matrix (~70 at.%), or a dominant crystalline phase with separated nanoscale amorphous zones (~80 at.% Cu). Nanomechanical probing of the different microstructures reveals that the hardness of the fully amorphous alloy is much higher than a rule of mixture would predic...
Nondestructive Characterization of Microstructures of Heat-Treated Steels by Magnetic Barkhausen Noise Technique
Gür, Cemil Hakan (2017-01-01)
Optimization and control of the microstructure is important for improving the properties of steel components. Development of non-destructive techniques for microstructure characterization is a critical task. Magnetic Barkhausen Noise (MBN) technique is a promising and challenging non-destructive technique for automated evaluation of microstructures in steel components in a fast and reliable manner. This paper presents the results of MBN measurements for microstructure characterization of the quenched and te...
Non-destructive determination of residual stress state in steel weldments by Magnetic Barkhausen Noise technique
Yelbay, Hasan İlker; Çam, İbrahim; Gür, Cemil Hakan (2010-01-01)
The purpose of this study is non-destructive determination of residual stresses in the welded steel plates by Magnetic Barkhausen Noise (MBN) technique. A MBN-stress calibration set-up and a residual stress measurement system with scanning ability were developed. To control the accuracy and the effectiveness of the developed system and procedure, various MBN measurements were carried out. The MBN results were verified by the hole-drilling method. Microstructural investigation and hardness measurements were ...
Microstructural Investigation and Phase Relationships of Fe-Al-Hf Alloys
Yildirim, Mehmet; Akdeniz, Mahmut Vedat; Mehrabov, Amdulla (Springer Science and Business Media LLC, 2014-4-2)
The effect of Hf addition on microstructures, phase relationships, microhardness, and magnetic properties of Fe50Al50-n Hf (n) alloys for n = 1, 3, 5, 7, and 9 at. pct has been investigated. At all investigated compositions, the ternary intermetallic HfFe6Al6 tau (1) phase forms due to the limited solid solubility of Hf in FeAl phase and tends to develop a eutectic phase mixture with the Fe-Al-based phase. The Hf concentration of the eutectic composition is found to be 7 at. pct from the microstructural exa...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
C. H. Gür, “Microstructure characterization of heat-treated ferromagnetic steels by magnetic barkhausen noise method,” 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/48352.