Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Temporal logic model predictive control for discrete time systems
Date
2013-04-08
Author
Aydın Göl, Ebru
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
159
views
0
downloads
Cite This
This paper proposes an optimal control strategy for a discrete-time linear system constrained to satisfy a temporal logic specification over a set of linear predicates in its state variables. The cost is a quadratic function that penalizes the distance from desired state and control trajectories. The specification is a formula of syntactically co-safe Linear Temporal Logic (scLTL), which can be satisfied in finite time. It is assumed that the reference trajectories are only available over a finite horizon and a model predictive control (MPC) approach is employed. The MPC controller solves a set of convex optimization problems guided by the specification and subject to progress constraints. The constraints ensure that progress is made towards the satisfaction of the formula with guaranteed satisfaction by the closed-loop trajectory. The algorithms proposed in this paper were implemented as a software package that is available for download. Illustrative case studies are included.
URI
https://hdl.handle.net/11511/48362
DOI
https://doi.org/10.1145/2461328.2461379
Collections
Department of Computer Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Fuzzy neural network learning method for time series analysis using multivariate autoregression
Sisman, NA; Alpaslan, Ferda Nur (1998-11-13)
This paper describes how temporal fuzzy neural network model proposed in [4] can be applied to time series analysis when a multivariate autoregressive model is constructed. The fuzzy multivariate autoregression procedure is described first, then the temporal fuzzy neural network model using this procedure is presented.
Temporal logic inference for classification and prediction from data
Kong, Zhaodan; Jones, Austin; Medina, Ayala Ana; Aydın Göl, Ebru; Belta, Calin (2014-04-15)
This paper presents an inference algorithm that can discover temporal logic properties of a system from data. Our algorithm operates on finite time system trajectories that are labeled according to whether or not they demonstrate some desirable system properties (e.g. "the car successfully stops before hitting an obstruction"). A temporal logic formula that can discriminate between the desirable behaviors and the undesirable ones is constructed. The formulae also indicate possible causes for each set of beh...
Dynamic programming for a Markov-switching jump-diffusion
Azevedo, N.; Pinheiro, D.; Weber, Gerhard Wilhelm (Elsevier BV, 2014-09-01)
We consider an optimal control problem with a deterministic finite horizon and state variable dynamics given by a Markov-switching jump-diffusion stochastic differential equation. Our main results extend the dynamic programming technique to this larger family of stochastic optimal control problems. More specifically, we provide a detailed proof of Bellman's optimality principle (or dynamic programming principle) and obtain the corresponding Hamilton-Jacobi-Belman equation, which turns out to be a partial in...
Time series on riemannian manifolds
Ergezer, Hamza; Leblebicioğlu, Mehmet Kemal; Department of Electrical and Electronics Engineering (2017)
In this thesis, feature covariance matrices are utilized to solve several problems related to time series. In the first part of the thesis, a novel representation is proposed to represent the time series using feature covariance matrices. By this representation, time series are carried onto Riemannian manifold space. The proposed representation is firstly applied to trajectories which are essentially 2D time series. Anomaly detection and activity perception problems in crowded visual scenes are studied by usi...
Stability analysis of constraints in flexible multibody systems dynamics
İder, Sıtkı Kemal (Elsevier BV, 1990-1)
Automated algorithms for the dynamic analysis and simulation of constrained multibody systems assume that the constraint equations are linearly independent. During the motion, when the system is at a singular configuration, the constraint Jacobian matrix possesses less than full rank and hence it results in singularities. This occurs when the direction of a constraint coincides with the direction of the lost degree of freedom. In this paper the constraint equations for deformable bodies are modified for use...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Aydın Göl, “Temporal logic model predictive control for discrete time systems,” 2013, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/48362.