Investigation of crack growth along curved interfaces in L-shaped composite and polymers

2014-01-01
Yavas, D.
Gozluklu, B.
Çöker, Demirkan
Delamination in unidirectional L-shaped composite laminates is modeled with two L-shaped polycarbonate plates bonded to each other where the effect of pre-crack length on the stability of the crack growth is investigated experimentally and computationally. In the experimental study, a unique testing fixture with a sliding platform is designed to create a pure vertical displacement to one of the arms. The full-field technique of photoelasticity is used in order to visualize isochromatic fringe pattern around the crack tip located at the bonded interface of the L-shaped polycarbonate plates. In the computational study, debonding at the interface of L-shaped plates is modeled using dynamic (explicit) finite element analysis in conjunction with cohesive zone methods. In numerical analysis, pure vertical displacement is applied to one of the arms to reflect the same loading condition as the experiment. Experimental and finite element analysis results are in agreement in terms of load–displacement behavior and stress distribution, which indicate a successful use of cohesive zone method in modeling of crack growth. Stable and unstable crack growth regimes, depending on the precrack length, are identified in agreement with energy release rate calculations. The crack growth regimes are also consistent with unstable crack growth observed in L-shaped unidirectional composite laminates.

Suggestions

Investigation of sludge viscosity and its effects on the performance of a vacuum rotation membrane bioreactor
KOMESLİ, Okan Tarık; Gökçay, Celal Ferdi (Informa UK Limited, 2014-03-04)
Sludge characteristics of a full-scale vacuum rotation membrane (VRM) bioreactor having plate-type membranes with 0.038 m nominal pore size and 540 m(2) surface area were investigated. The VRM plant is composed of an aeration tank and a filtration chamber. The sludge floc size distribution, as determined microscopically, was mainly between 0 and 100 m in the filter chamber with very little difference in size distribution between summer (20-25 degrees C) and winter (10-15 degrees C) seasons. Small floc size ...
Investigation of cell migration and proliferation in agarose based hydrogels for tissue engineering applications
Vardar, Elif; Hasırcı, Nesrin; Hasırcı, Vasıf Nejat; Department of Biomedical Engineering (2010)
Hydrogels are three dimensional, insoluble, porous and crosslinked polymer networks. Due to their high water content, they have great resemblance to natural tissues, and therefore, demonstrate high biocompatibility. The porous structure provides an aqueous environment for the cells and also allows influx of nutrients needed for cellular viability. In this study, a natural biodegradable material, agarose (Aga), was used and semi-interpenetrating networks (semi-IPN) were prepared with polymers having differen...
Study of the Influence of Transition Metal Atoms on Electronic and Magnetic Properties of Graphyne Nanotubes Using Density Functional Theory
Alaei, Sholeh; Jalili, Seifollah; Erkoç, Şakir (Informa UK Limited, 2015-01-01)
Density functional theory calculations were used to study the adsorption of three transition metal atoms (Fe, Co, and Ni) on the external surface of two zigzag and two armchair graphyne nanotubes. The most stable position for the adsorption of all three metal atoms on all nanotubes is on the acetylenic ring. The metal atom remains in the plane of the acetylenic ring and makes six bonds with neighboring carbon atoms. Fe and Co complexes are magnetic and show different properties such as metal, semimetal, hal...
Investigation of structural, electronic, anisotropic elastic, and lattice dynamical properties of MAX phases borides: An Ab-initio study on hypothetical &ITM(2)AB&IT (M = &ITTi&IT, &ITZr&IT, & A = &ITAl&IT, &ITGa&IT, &ITIn&IT) compounds
SÜRÜCÜ, GÖKHAN (2018-01-01)
The structural, electronic, anisotropic elastic, and lattice dynamical properties of the M(2)AB (M = Ti, Zr, Hf; A = Al, Ga, In) compounds belong to the family of MAX phases have been investigated by accomplishing the first principles density functional theory (DFT) calculations with utilizing the generalized-gradient approximation (GGA). Structural parameters, formation enthalpies, and X-ray diffraction patterns have been calculated for all compounds. Electronic band structure and corresponding density of ...
Experimental Investigation of Crack Propagation Mechanisms in Commercially Pure Aluminium Plates
Tekoğlu, C.; Çelik, Ş.; Duran, H.; Efe, M.; Nielsen, K.L. (Elsevier BV; 2019)
The crack surface morphology in tearing of ductile metal plates depends on the mechanical properties, chemical composition and the microstructure of the plate material as well as on the loading conditions and the specimen geometry. This study assesses the crack surface morphologies observed in commercially pure aluminium plates (Al 1050 H14). Mode I tearing was performed in both single and double edge notched tensile test setups with specimens cut from five different plates with different thickness t, viz. ...
Citation Formats
D. Yavas, B. Gozluklu, and D. Çöker, “Investigation of crack growth along curved interfaces in L-shaped composite and polymers,” 2014, vol. 7, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/48401.