Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Model Updating of a Nonlinear System: Gun Barrel of a Battle Tank
Date
2016-01-28
Author
Canbaloglu, Guvenc
Özgüven, Hasan Nevzat
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
191
views
0
downloads
Cite This
Nonlinearities in a structural system make the use of model updating methods developed for linear systems difficult to apply nonlinear systems. If the FRFs of the underlying linear systems in a nonlinear system could be experimentally extracted, then the linear model updating methods could easily be applied to nonlinear systems as well. When there are complex nonlinearities in a structure together with frictional type of nonlinearity, linear FRFs cannot be accurately obtained by using low level forcing. In this present work, the model updating method-Pseudo Receptance Difference (PRD) method-recently developed by the authors for nonlinear systems, is applied to the gun barrel of a battle tank. The linear FRFs of the nonlinear gun barrel of the battle tank are obtained from measured nonlinear FRFs, and simultaneously the nonlinearities in the system are identified. Then the inverse eigensensitivity method is employed to update the linear finite element (FE) model of the gun barrel. Finally, in order to demonstrate the accuracy of the updated nonlinear model, the calculated and measured FRFs of the gun barrel at several different forcing levels are compared.
Subject Keywords
Nonlinear Model Updating
,
Nonlinear Identification
,
Nonlinearity
,
Gun Barrel
,
Nonlinear Structures
URI
https://hdl.handle.net/11511/48491
DOI
https://doi.org/10.1007/978-3-319-29739-2_34
Collections
Department of Mechanical Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Experimental validation of pseudo receptance difference (PRD) method for nonlinear model updating
Canbaloglu, Guvenc; Özgüven, Hasan Nevzat (Springer, 2015-02-05)
In real life applications most of the structures have nonlinearities, which restrict us applying model updating techniques available for linear structures. Well-established FRF based model updating methods would easily be extended to a nonlinear system if the FRFs of the underlying linear system (linear FRFs) could be experimentally measured. When frictional type of nonlinearity co-exists with other types of nonlinearities, it is not possible to obtain linear FRFs experimentally by using low level forcing. ...
Digital controller design for sampled-data nonlinear systems
Üstüntürk, Ahmet; Kocaoğlan, Erol; Department of Electrical and Electronics Engineering (2012)
In this thesis, digital controller design methods for sampled-data nonlinear systems are considered. Although sampled-data nonlinear control has attracted much attention in recent years, the controller design methods for sampled-data nonlinear systems are still limited. Therefore, a range of controller design methods for sampled-data nonlinear systems are developed such as backstepping, adaptive and robust backstepping, reduced-order observer-based output feedback controller design methods based on the Eule...
FRF decoupling of nonlinear systems
Kalayclogiu, Taner; Özgüven, Hasan Nevzat (2018-03-01)
Structural decoupling problem, i.e. predicting dynamic behavior of a particular substructure from the knowledge of the dynamics of the coupled structure and the other substructure, has been well investigated for three decades and led to several decoupling methods. In spite of the inherent nonlinearities in a structural system in various forms such as clearances, friction and nonlinear stiffness, all decoupling studies are for linear systems. In this study, decoupling problem for nonlinear systems is address...
A Novel Computational Method to Calculate Nonlinear Normal Modes of Complex Structures
Samandarı, Hamed; Ciğeroğlu, Ender (2019-01-31)
In this study, a simple and efficient computational approach to obtain nonlinear normal modes (NNMs) of nonlinear structures is presented. Describing function method (DFM) is used to capture the nonlinear internal forces under periodic motion. DFM has the advantage of expressing the nonlinear internal force as a nonlinear stiffness matrix multiplied by a displacement vector, where the off-diagonal terms of the nonlinear stiffness matrix can provide a comprehensive knowledge about the coupling between the mo...
Lateral stiffness estimation in frames and its implementation to continuum models for linear and nonlinear static analysis
EROĞLU AZAK, TUBA; Akkar, Dede Sinan (2011-08-01)
Continuum model is a useful tool for approximate analysis of tall structures including moment-resisting frames and shear wall-frame systems. In continuum model, discrete buildings are simplified such that their overall behavior is described through the contributions of flexural and shear stiffnesses at the story levels. Therefore, accurate determination of these lateral stiffness components constitutes one of the major issues in establishing reliable continuum models even if the proposed solution is an appr...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
G. Canbaloglu and H. N. Özgüven, “Model Updating of a Nonlinear System: Gun Barrel of a Battle Tank,” 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/48491.