Digital controller design for sampled-data nonlinear systems

Download
2012
Üstüntürk, Ahmet
In this thesis, digital controller design methods for sampled-data nonlinear systems are considered. Although sampled-data nonlinear control has attracted much attention in recent years, the controller design methods for sampled-data nonlinear systems are still limited. Therefore, a range of controller design methods for sampled-data nonlinear systems are developed such as backstepping, adaptive and robust backstepping, reduced-order observer-based output feedback controller design methods based on the Euler approximate model. These controllers are designed to compensate the effects of the discrepancy between the Euler approximate model and exact discrete time model, parameter estimation error in adaptive control and observer error in output feedback control which behave as disturbance. A dual-rate control scheme is presented for output-feedback stabilization of sampled-data nonlinear systems. It is shown that the designed controllers semiglobally practically asymptotically (SPA) stabilize the closed-loop sampled-data nonlinear system. Moreover, various applications of these methods are given and their performances are analyzed with simulations.

Suggestions

Model Updating of a Nonlinear System: Gun Barrel of a Battle Tank
Canbaloglu, Guvenc; Özgüven, Hasan Nevzat (2016-01-28)
Nonlinearities in a structural system make the use of model updating methods developed for linear systems difficult to apply nonlinear systems. If the FRFs of the underlying linear systems in a nonlinear system could be experimentally extracted, then the linear model updating methods could easily be applied to nonlinear systems as well. When there are complex nonlinearities in a structure together with frictional type of nonlinearity, linear FRFs cannot be accurately obtained by using low level forcing. In ...
Adaptive output feedback control with reduced sensitivity to sensor noise
Kutay, Ali Türker; Hovakimyan, N (2003-01-01)
We address adaptive output feedback control of uncertain nonlinear systems with noisy output measurements, in which both the dynamics and the dimension of the regulated system may be unknown, and only the relative degree of the regulated output is assumed to be known. Given a smooth reference trajectory, the problem is to design a controller that forces the system measurement to track it with bounded errors. A recently developed method proposes the use of a linear error observer that estimates the tracking ...
Faux Riccati equation techniques for feedback control of nonlinear and time-varying systems
Prach, Anna; Tekinalp, Ozan; Bernstein, Dennis; Department of Aerospace Engineering (2015)
Rapid development of nonlinear control theory for application to challenging and complex problems is motivated by the fast technological development and demand for highly accurate control systems. In infinite-horizon nonlinear optimal control the essential difficulty is that no efficient analytical or numerical algorithm is available to derive exact expressions for optimal controls. This work concerns the numerical investigation of faux Riccati equation methods for control of nonlinear and linear time-varyi...
Development of a model updating technique for nonlinear systems
Canbaloğlu, Güvenç; Özgüven, Hasan Nevzat; Ünver, Hakkı Özgür; Department of Mechanical Engineering (2015)
In structural dynamics, obtaining an accurate numerical model is very crucial. However there are usually discrepancies between calculated dynamic behavior from numerical models and the ones obtained experimentally, and therefore it will be necessary to update the numerical models. In real life applications, structures usually have nonlinearity, and for nonlinear structures, in order to update the numerical model, firstly nonlinearity in the structure can be identified, and then updating procedure may be app...
A Control System Architecture for Control of Non-Affine in Control, Open-Loop Unstable Underactuated Systems
Marangoz, Alp; Kutay, Ali Türker (2017-07-25)
In this paper, a control system architecture for control of non-affine in control, open-loop unstable underactuated system is discussed. Passivization of the unactuated (internal) system dynamics achieved through perturbation of trajectories of the actuated states, which are calculated through adaptive dynamic inversion technique, based on Tikhonov's theorem. Performance of the controller is shown through simulation of two open-loop unstable and locally uncontrollable example problems.
Citation Formats
A. Üstüntürk, “Digital controller design for sampled-data nonlinear systems,” Ph.D. - Doctoral Program, Middle East Technical University, 2012.