Stability Formulation for Integrated Opto-mechanic Phase Shifters

2018-01-31
Ozer, Yigit
Kocaman, Serdar
Stability of opto-mechanical phase shifters consisting of waveguides and non-signal carrying control beams is investigated thoroughly and a formula determining the physical limitations has been proposed. Suggested formulation is not only beneficial to determine physical strength of the system but also advantageous to guess the response of the output to the fabrication errors. In the iterative analysis of cantilever and double-clamped beam geometrical configurations, the stability condition is revealed under the strong inter-dependence of the system parameters such as input power, device length and waveguide separation. Numerical calculations involving effective index modifications and opto-mechanic movements show that well-known cantilever beams are unstable and inadequate to generate phi = 180 degrees phase difference, while double-clamped beam structures can be utilized to build functional devices. Ideal operation conditions are also presented in terms of both the device durability and the controllability of phase evolution.
SCIENTIFIC REPORTS

Suggestions

Physical Stability Analysis for Optical MEMS Phase Shifters
Ozer, Yigit; Kocaman, Serdar (2018-10-04)
Stability and switching performance of light force driven opto-mechanical phase shifters are examined and a formula determining the stability condition has been proposed for various structures. The analysis showed that cantilever beams are inadequate to generate 180 phase difference.
Delay characteristics comparison of coherently coupled high-Q multi-cavity array and single embedded quantum dot cavity systems
Kocaman, Serdar; Sayan, Gönül (2017-01-31)
The optical analogue to electromagnetically induced transparency (EIT) is modeled for two separate systems with the same formalism and the spectral characteristics together with the generated group delay are compared. First system is a coherently coupled high-Q multi-cavity array which represents the classical EIT and is limited by the finite broadening of the cavity and the second one is a single embedded quantum dot (QD) cavity system, a cavity-QD EIT, that depends on both QD broadening and cavity propert...
Design and experimental analysis of mechanical force generators for performance improvement of machines
Ekinci, Mehmet Burak; Soylu, Reşit; Department of Mechanical Engineering (2019)
Recently, a novel overconstrained mechanism with favorable dynamic properties, namely the MFG (Mechanical Force Generator), has been proposed. This mechanism can provide a desired mechanical force, or power variation depending on the position of its input links. This power profile can be adjusted in order to improve the performance of a machine and its actuators that are connected to the MFG. In previous works, determination of an optimum power profile for the MFG and determination of the MFG design paramet...
Study on the long wavelength SiGe/Si heterojunction internal photoemission infrared photodetectors
Aslan, B; Turan, Raşit; Liu, HC (Elsevier BV, 2005-10-01)
The theory of internal photoemission in semiconductor heterojunctions has been investigated and the existing model has been extended by incorporating the effect of different effective masses in the active region and the substrate, nonspherical-nonparabolic bands, and the energy loss per collision. Photoresponse measurements on Si1-xGex/Si heterojunction internal photoemission (HIP) infrared photodetectors (IP) have shown that they are fit well by the theory. Qualitative model describing the mechanisms of ph...
Nonlinear system identification and nonlinear experimental modal analysis by using response controlled stepped sine testing
Karaağaçlı, Taylan; Özgüven, Hasan Nevzat; Department of Mechanical Engineering (2020-12-24)
In this work, two novel nonlinear system identification methods are proposed in both the modal and spatial domains, respectively, based on response-controlled stepped-sine testing (RCT) where the displacement amplitude of the excitation point is kept constant throughout the frequency sweep. The proposed nonlinear modal identification method, which is also a nonlinear experimental modal analysis technique, applies to systems with several nonlinearities at different (and even unknown) locations (e.g. joint no...
Citation Formats
Y. Ozer and S. Kocaman, “Stability Formulation for Integrated Opto-mechanic Phase Shifters,” SCIENTIFIC REPORTS, pp. 0–0, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/48501.