Natural periods of steel plate shear wall systems

in most seismic building codes, the design base acceleration is computed using the natural period of vibration of the structure. Design specifications provide empirical formula to estimate the fundamental natural period of a system. In this study a class of steel plate shear walls, that have uniform properties through their height, was considered. The fundamental natural periods of this class of structures were determined using three dimensional geometrically linear finite element analyses and were compared against the estimates provided by seismic design specifications. Comparisons reveal that estimations using approximate formula can lead to unsatisfactory results. Based on this observation a simple hand method has been developed to predict the fundamental period of a steel plate shear wall. In the development of the hand method the steel plate shear wall has been recognized as a vertical cantilever for which simplified analytical solutions exist. Contributions of shear and bending stiffness of the wall have been explicitly taken into account. Furthermore, this simple method has been extended to dual systems having plate walls and special moment frames in the context of theories on wall-frame structures. Natural period estimations using the method that was developed in this study are compared with the finite element solutions and a good agreement is demonstrated. In addition, the effects of geometrical and material nonlinearities on the fundamental period were explored. The fundamental periods of steel plate walls were investigated at various drift levels. Based on the numerical analysis, elongation of the periods due to buckling and yielding of infill plates were quantified and are presented herein.


Seismic performance of chevron braced steel frames with and without viscous fluid dampers as a function of ground motion and damper characteristics
Dicleli, Murat (Elsevier BV, 2007-08-01)
This study is aimed at comparing the seismic performance of steel chevron braced frames (CBFs) with and without viscous fluid dampers (VFDs) as a function of the intensity and frequency characteristics of the ground motion and VFD parameters. For this purpose, comparative nonlinear time history (NLTH) analyses of single and multiple story CBFs with and without VFDs are conducted using ground motions with various frequency characteristics scaled to represent small, moderate and large intensity earthquakes. A...
Generalized interstory drift spectrum
Miranda, E; Akkar, SD (American Society of Civil Engineers (ASCE), 2006-06-01)
The recently developed drift spectrum is extended to buildings that do not deform laterally like pure shear beams. Similarly to Iwan's drift spectrum, the proposed generalized interstory drift spectrum uses a continuous linear-elastic model to obtain estimates of interstory drift demands in buildings. However, the generalized interstory drift spectrum is based on a continuous model that consists of a combination of a flexural beam and a shear beam, rather than only a shear beam. By modifying one parameter t...
Evolutionary structural optimization of steel gusset plates
Khalaf, A. A.; Saka, M. P. (Elsevier BV, 2007-01-01)
Evolutionary structural optimization is applied to determine the optimum shape of steel gusset plates subjected to axial forces. A number of different gusset plates used in various types of connections is considered for this purpose. The evolutionary structural optimization approach is employed to find the optimum shapes of a gusset plate used in these connections. The first example considers a gusset plate having two holes which are utilized in the connection of double angle carrying a tensile force. Withi...
Frame Element for Metallic Shear-Yielding Members under Cyclic Loading
Sarıtaş, Afşin (American Society of Civil Engineers (ASCE), 2009-09-01)
Modeling the energy dissipation capacity of shear-yielding members is important in the evaluation of the seismic response of earthquake resistant structural systems. This paper presents the model of a frame element for the hysteretic behavior of these members. The model is based on a three-field variational formulation with independent displacement, stress, and strain fields. The displacement field is based on the Timoshenko beam theory. The nonlinear response of the element is derived from the section inte...
Effect of cyclic thermal loading on the performance of steel H-piles in integral bridges with stub-abutments
Dicleli, Murat (Elsevier BV, 2004-02-01)
In this paper, analytical equations are developed to estimate the lateral displacement capacity of steel-H piles in integral bridges with stub abutments subjected to cyclic thermal variations. First, steel H piles that are capable of sustaining large plastic deformations are identified based on their local buckling strength. The normalized moment-curvature relationships of these piles are then obtained for various axial load levels. Next, a low-cycle fatigue damage model is employed to determine the maximum...
Citation Formats
C. Topkaya, “Natural periods of steel plate shear wall systems,” JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH, pp. 542–551, 2009, Accessed: 00, 2020. [Online]. Available: