A Monolithic Phased Array with RF MEMS Technology

Sağkol, Hüseyin
Topallı, Kaan
Ünlü, Mehmet
Aydın Çivi, Hatice Özlem
Koç, Seyit Sencer
Demir, Şimşek
Akın, Tayfun
This paper reports a monolithic phased array implemented using RF MEMS technology. The phased array is composed of a linear array of four patch antennas and a new phase shifter design, monolithically integrated into a glass substrate. The new phase shifter design consists of two sections: one continuous and one discrete phase shifter. Combination of these two types makes it possible to give continuous and large phase shifts at the same time. The phase shifter can provide a phase shift of about 95/spl deg/ continuously at an operating frequency of 15 GHz. The antenna return loss (S/sub 11/) is about -20 dB.


A monolithic phased array using rf mems technology
Topallı, Kağan; Aydın Çivi, Hatice Özlem; Department of Electrical and Electronics Engineering (2007)
This thesis presents a novel monolithic phased array implemented using the RF MEMS technology. The structure, which is designed at 15 GHz, consists of four linearly placed microstrip patch antennas, 3-bit distributed RF MEMS low-loss phase shifters, and a corporate feed network. The RF MEMS phase shifter employed in the system consists of three sections with a total of 28 unit cells, and it occupies an area of 22.4 mm 2.1 mm. The performance of the phase shifters is improved using high-Q metal-air-metal ca...
Reconfigurable reflectarray using RF MEMS technology
Bayraktar, Ömer; Topallı, Kaan; Ünlü, Mehmet; İstanbulluoğlu, İpek; Temoçin, Engin Ufuk; Atasoy, Halil İbrahim; Aydın Çivi, Hatice Özlem; Demir, Şimşek; Koç, Seyit Sencer; Akın, Tayfun (2006-11-06)
This paper presents the design of a reconfigurable microstrip slot-coupled patch reflectarray using RF MEMS switches. The reflectarray is designed on two back-to-back bonded glass substrates front side of which contains the microstrip patch antenna elements and the backside contains the phase shifting elements. The phase shifting elements consist of microstrip lines the lengths of which are adjusted with MEMS switches resulting with adjustable phase characteristics of each antenna element. A transmission li...
A Novel Neural Network Method for Direction of Arrival Estimation with Uniform Cylindrical 12-Element Microstrip Patch Array
Caylar, Selcuk; Dural, Guelbin; Leblebicioğlu, Mehmet Kemal (2008-01-01)
In this study a new neural network algorithm is proposed for real time multiple source tracking problem with cylindrical patch antenna array based on a previous v reported Modified Neural Multiple Source Tracking Algorithm(MN-MUST). The proposed algorithm, namely Cylindrical Microstrip Patch Array Modified Neural Multiple Source Tracking Algorithm (CMN-MUST) implements W-MUST algorithm on a cylindrical microsttip patch array structure. CMN-MUST algorithm uses the advantage of directive pattern of microstrip...
35 GHz phased array antenna using DMTL phase shifters
Guclu, Caner; Cetintepe, Cagri; Aydın Çivi, Hatice Özlem; Demir, Şimşek; Akın, Tayfun (2010-08-27)
This paper presents the design of a monolithic phased array antenna with DMTL phase shifters on quartz substrate operating at 35 GHz. The design integrates DMTL phase shifters, rectangular slot antennas with the feed network comprising CPW lines, CPW T-junction and corners. On the four branches of the antenna, there are 5-bit phase shifters using 31 MEMS bridges, covering 360° with a resolution of 11.25°.
Optimizations of Patch Antenna Arrays Using Genetic Algorithms Supported by the Multilevel Fast Multipole Algorithm
Onol, Can; Ergül, Özgür Salih (2014-12-01)
We present optimizations of patch antenna arrays using genetic algorithms and highly accurate full-wave solutions of the corresponding radiation problems with the multilevel fast multipole algorithm (MLFMA). Arrays of finite extent are analyzed by using MLFMA, which accounts for all mutual couplings between array elements efficiently and accurately. Using the superposition principle, the number of solutions required for the optimization of an array is reduced to the number of array elements, without resorti...
Citation Formats
H. Sağkol et al., “A Monolithic Phased Array with RF MEMS Technology,” 2002, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/48602.