Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Probabilistic Models for Cyclic Straining of Saturated Clean Sands
Date
2009-03-01
Author
Çetin, Kemal Önder
Wu, Jiaer
Kammerer, Annie M.
Seed, Raymond B.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
257
views
0
downloads
Cite This
A maximum likelihood framework for the probabilistic assessment of postcyclic straining of saturated clean sands is described. Databases consisting of cyclic laboratory test results including maximum shear and postcyclic volumetric strains in conjunction with relative density, number of stress (strain) cycles, and "index" test results were used for the development of probabilistically based postcyclic strain correlations. For this purpose, in addition to the compilation of existing data from literature, a series of stress-controlled cyclic triaxial and simple shear tests were performed on laboratory-constituted saturated clean sand specimens. The variabilities in testing conditions (i.e., type of test, consolidation procedure, confining pressure, rate of loading, etc.) were corrected through a series of correction schemes, the effectiveness of which were later confirmed by the discriminant analyses results. Volumetric and shear strain boundary curves were developed in the cyclic stress ratio versus N-1,N-60,N-CS or q(c,1) domain. In addition to being based on significantly extended and higher quality databases, contrary to the existing judgmentally derived deterministic ones, proposed correlations have formal probabilistic bases, and so provide insight regarding uncertainty of strain predictions or probability of exceeding a target strain value. Probabilistic uses of the proposed correlations were illustrated by three sets of examples. A companion paper applied and calibrated the proposed volumetric strain correlation to semiempirically evaluate postearthquake settlement of level, free-field sites. For the calibration, case history soil profiles, composed of a broad range of sand types and depositional characteristics, shaken by a number of earthquakes, were used. Superior predictions of field settlements by this laboratory data-based cyclic strain assessment approach were concluded to be strongly mutually supportive.
Subject Keywords
Geotechnical Engineering and Engineering Geology
,
General Environmental Science
URI
https://hdl.handle.net/11511/48677
Journal
JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING
DOI
https://doi.org/10.1061/(asce)1090-0241(2009)135:3(371)
Collections
Department of Civil Engineering, Article
Suggestions
OpenMETU
Core
Probabilistic Model for the Assessment of Cyclically Induced Reconsolidation (Volumetric) Settlements
Çetin, Kemal Önder; Wu, Jiaer; Kammerer, Annie M.; Seed, Raymond B. (American Society of Civil Engineers (ASCE), 2009-03-01)
A maximum likelihood framework for the probabilistic assessment of cyclically induced reconsolidation settlements of saturated cohesionless soil sites is described. For this purpose, over 200 case history sites were carefully studied. After screening for data quality and completeness, the resulting database is composed of 49 high-quality, cyclically induced ground settlement case histories from seven different earthquakes. For these case history sites, settlement predictions by currently available methods o...
Cyclic Large Strain and Induced Pore Pressure Models for Saturated Clean Sands
Çetin, Kemal Önder (American Society of Civil Engineers (ASCE), 2012-03-01)
Semiempirical probabilistic models are described to assess cyclic large strain and induced excess pore-water pressure responses of fully saturated clean sands. For this purpose, available cyclic simple shear and triaxial tests were compiled and studied. The resulting r(u) versus gamma, and gamma versus N databases are composed of 101 and 84 cyclic test data, respectively. Key parameters of the proposed r(u) and gamma models are defined as critical shear strain, relative density, effective confining stress, ...
Shear-Wave Velocity-Based Probabilistic and Deterministic Assessment of Seismic Soil Liquefaction Potential
Kayen, R.; Moss, R. E. S.; Thompson, E. M.; Seed, R. B.; Çetin, Kemal Önder; Kiureghian, A. Der; Tanaka, Y.; Tokimatsu, K. (American Society of Civil Engineers (ASCE), 2013-03-01)
Shear-wave velocity (V-s) offers a means to determine the seismic resistance of soil to liquefaction by a fundamental soil property. This paper presents the results of an 11-year international project to gather new V-s site data and develop probabilistic correlations for seismic soil liquefaction occurrence. Toward that objective, shear-wave velocity test sites were identified, and measurements made for 301 new liquefaction field case histories in China, Japan, Taiwan, Greece, and the United States over a d...
A rippability classification system for marls in lignite mines
BASARIR, H; Karpuz, Celal (Elsevier BV, 2004-08-01)
This paper describes the development of a rippability classification system for marls in lignites mines based on direct ripping runs, specific energy concept and indirect rippability assessment methods. Extensive field and laboratory studies were undertaken in six different panels of Turkish Coal Enterprises and Sivas-Kangal Lignite mines. Rock mass descriptions were made, seismic P-wave velocities are measured at the field, direct cutting tests and rock material property determination tests were carried ou...
CPT-Based Probabilistic Soil Characterization and Classification
Çetin, Kemal Önder (American Society of Civil Engineers (ASCE), 2009-01-01)
Due to lack of soil sampling during conventional cone penetration testing, it is necessary to characterize and classify soils based on tip and sleeve friction values as well as pore pressure induced during and after penetration. Currently available semiempirical methods exhibit a significant variability in the estimation of soil type. Within the confines of this paper it is attempted to present a new probabilistic cone penetration test (CPT)-based soil characterization and classification methodology, which ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
K. Ö. Çetin, J. Wu, A. M. Kammerer, and R. B. Seed, “Probabilistic Models for Cyclic Straining of Saturated Clean Sands,”
JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING
, pp. 371–386, 2009, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/48677.