Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Frequently Asked Questions
Frequently Asked Questions
Communities & Collections
Communities & Collections
Characterization of Particulate Matter Emitted from Combustion of Various Biomasses in O-2/N-2 and O-2/CO2 Environments
Date
2014-01-01
Author
Ruscio, Amanda
Kazanç Özerinç, Feyza
Levendis, Yiannis A.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
10
views
0
downloads
This work reports on the physical and chemical characteristics of the ashes of biomass residues burned in air as well as in simulated dry oxy-combustion conditions. Three pulverized biomass residues (olive residue, corn residue, and torrefied pine sawdust) were burned in a laboratory-scale laminar-flow drop tube furnace heated to 1400 K. Olive residue resulted in by far the largest particulate yields both submicrometer (PM1) and supermicrometer (PM1-18)-whereas torrefied pine sawdust resulted in the lowest. The collected particulate yields of these two biomasses were analogous to their ash contents. The collected particulate yields of corn residue, however, were lower than expected in view of its ash content. To investigate the effects of the oxygen mole fraction and of the background gas, the O-2 mole fraction was varied from 20% to 60% in either N-2 or CO2. Submicrometer particulate matter (PM1) emission yields of all three fuels were lower in O-2/CO2 than in O-2/N-2 environments; they typically, but not always, increased with increasing O-2 mole fraction in either background gas. The background gas had little effect on the chemical composition of the PM1 particles. High amounts of alkalis (potassium, calcium, and sodium) as well as of. chlorine were observed in PM1. In addition, phosphorus and sulfur also existed in high amounts in PM1 from combustion of corn residue. Supermicrometer particles (PM1-18) yields exhibited no clear trend when the background gas was changed or when the oxygen mole fraction was increased. The composition of these particles reflected the bulk ash composition of the parent fuels.
Subject Keywords
Fuel Technology
,
Energy Engineering and Power Technology
,
General Chemical Engineering
URI
https://hdl.handle.net/11511/48808
Journal
ENERGY & FUELS
DOI
https://doi.org/10.1021/ef401796w
Collections
Department of Mechanical Engineering, Article