Inverse Sturm-Liouville problems with pseudospectral methods

2015-07-03
Altundag, H.
Boeckmann, C.
Taşeli, Hasan
In this paper a technique to obtain a first approximation for singular inverse Sturm-Liouville problems with a symmetrical potential is introduced. The singularity, as a result of unbounded domain (-infinity, infinity), is treated by considering numerically the asymptotic limit of the associated problem on a finite interval (-L, L). In spite of this treatment, the problem has still an ill-conditioned structure unlike the classical regular ones and needs regularization techniques. Direct computation of eigenvalues in iterative solution procedure is made by means of pseudospectral methods. A fairly detailed description of the numerical algorithm and its applications to specific examples are presented to illustrate the accuracy and convergence behaviour of the proposed approach.
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS

Suggestions

Evaluation of Hypersingular Integrals on Curvilinear Surface Elements
Selcuk, Gokhun; Koç, Seyit Sencer (2016-04-15)
In this study finite part integrals are utilized for evaluation of hypersingular and nearly-hypersingular surface integrals on curvilinear elements. These integrals are related to the second derivative of the free space Green' function and arise in the solution of electric field integral equation (EFIE) via locally corrected Nystriim (LCN) method. The curvilinear elements are represented by the Taylor series expansion of the surface function around the observation point. The hypersingular integral, defined ...
Forward Kinematics of the 3RPR planar Parallel Manipulators Using Real Coded Genetic Algorithms
Rolland, Luc; Chandra, Rohitash (2009-09-16)
This article examines Genetic Algorithms to solve the forward kinematics problem applied to planar parallel manipulators. Most of these manipulators can be modeled by the tripod 3-RPR.
Inverse Sturm-Liouville Systems over the whole Real Line
Altundağ, Hüseyin; Taşeli, Hasan; Department of Mathematics (2010)
In this thesis we present a numerical algorithm to solve the singular Inverse Sturm-Liouville problems with symmetric potential functions. The singularity, which comes from the unbounded domain of the problem, is treated by considering the limiting case of the associated problem on the symmetric finite interval. In contrast to regular problems which are considered on a finite interval the singular inverse problem has an ill-conditioned structure despite of the limiting treatment. We use the regularization t...
EXACT SPIN AND PSEUDO-SPIN SYMMETRIC SOLUTIONS OF THE DIRAC-KRATZER PROBLEM WITH A TENSOR POTENTIAL VIA LAPLACE TRANSFORM APPROACH
Arda, Altug; Sever, Ramazan (2012-09-28)
Exact bound state solutions of the Dirac equation for the Kratzer potential in the presence of a tensor potential are studied by using the Laplace transform approach for the cases of spin- and pseudo-spin symmetry. The energy spectrum is obtained in the closed form for the relativistic as well as non-relativistic cases including the Coulomb potential. It is seen that our analytical results are in agreement with the ones given in the literature. The numerical results are also given in a table for different p...
Discrete linear Hamiltonian systems: Lyapunov type inequalities, stability and disconjugacy criteria
Zafer, Ağacık (2012-12-15)
In this paper, we first establish new Lyapunov type inequalities for discrete planar linear Hamiltonian systems. Next, by making use of the inequalities, we derive stability and disconjugacy criteria. Stability criteria are obtained with the help of the Floquet theory, so the system is assumed to be periodic in that case.
Citation Formats
H. Altundag, C. Boeckmann, and H. Taşeli, “Inverse Sturm-Liouville problems with pseudospectral methods,” INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, pp. 1373–1384, 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/48827.