Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A Road Map For CFD Modelling Of Forced Cooled Packages
Date
2006-11-10
Author
OZTURK, Emre
Tarı, İlker
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
217
views
0
downloads
Cite This
In this study, Computational Fluid Dynamics, which has taken its position in the thermal design of electronic packages, was used in order to draw a CFD road map for forced cooling conjugate heat transfer analyses in heat generating electronic systems. The main sources of error in CFD analyses arise from inappropriate numerical models including turbulence models, radiation modeling and discretization schemes, insufficient grid resolution, and lack of convergence. A complete computer chassis model with heat sinks and fans inside was created and parametric analyses were performed to compare the effects of different turbulence models, discretization schemes, mesh resolutions, convergence criteria, and radiative heat transfer. Two commercially available CFD software packages were used, Icepak™ for pre-processing, Fluent™ for solution and post-processing. The road map was applied to three different heat sinks modeled into the full chassis. Numerical results were compared with the available experimental data and they were in good agreement.
Subject Keywords
Thermal design
,
CPU cooling
,
CFD
,
Conjugate heat transfer
,
Forced convection
,
Road map
URI
https://hdl.handle.net/11511/48844
DOI
https://doi.org/10.1115/imece2006-14307
Collections
Department of Mechanical Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
CFD MODELING OF FORCED COOLING OF COMPUTER CHASSIS
OZTURK, Emre; Tarı, İlker (2007-12-01)
In this study, Computational Fluid Dynamics, which has taken its position in the thermal design of electronic packages, was used in order to draw a CFD road map for forced cooling conjugate heat transfer analyses in heat generating electronic systems. The main sources of error in CM analyses arise from inappropriate numerical models including turbulence models, radiation modeling and discretization schemes, insufficient grid resolution, and lack of convergence. A complete computer chassis model with heat si...
Detailed simulations of parabolic trough collector for investigating enhancement of heat transfer to absorber tube flow
Uygur, Sinan; Tarı, İlker; Department of Mechanical Engineering (2021-2-12)
In this thesis, a detailed method to simulate heat transfer and fluid flow of parabolic trough solar collectors is presented. An optical model of the considered collector is created with Tonatiuh ray tracing program. The data of ray tracing analysis is exported to MATLAB as a binary file for post-processing. Curve fitting and surface fitting to the data are performed to obtain the heat flux distribution on the absorber tube’s outer surface. User-defined functions (UDFs) for ANSYS Fluent Computational Fluid ...
A numerical study on magneto-hydrodynamic mixed convection flow
Bozkaya, Canan (2014-01-01)
This paper, describes a study conducted to numerically investigate the two-dimensional, steady, laminar, magneto-hydrodynamic mixed convection flow and heat transfer characteristics in a lid-driven enclosure beneath an externally applied magnetic field. A solid square block is placed inside the cavity. The governing equations in the form of a stream function-vorticity-temperature formulation are solved numerically using the dual reciprocity boundary element method with constant elements. Treatment of nonlin...
A numerical study of single-phase convective heat transfer in microtubes for slip flow
Sun, Wei; Kakac, Sadik; Yazicioglu, Almila G. (2007-11-01)
The steady-state convective heat transfer for laminar, two-dimensional, incompressible rarefied gas flow in the thermal entrance region of a tube under constant wall temperature, constant wall heat flux, and linear variation of wall temperature boundary conditions are investigated by the finite-volume finite difference scheme with slip flow and temperature jump conditions. Viscous heating is also included, and the solutions are compared with theoretical results where viscous heating has been neglected. For ...
An optimization study for rotorcraft avionics bay cooling
Akin, Altug; Kahveci, Harika Senem (2019-07-01)
In this paper, a computational investigation of a rotorcraft avionics-bay cooling system is carried out. The introduced avionics cooling system utilizes a forced-convection method in which the ambient air is supplied to the avionics bay by a fan and then exhausted back into the ambient after cooling the equipment inside. The aim of this system is to keep the air temperature in the vicinity of the avionics equipment below the operational temperature limits. Depending on the locations of the fan and exhaust, ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. OZTURK and İ. Tarı, “A Road Map For CFD Modelling Of Forced Cooled Packages,” 2006, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/48844.