Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A numerical study of single-phase convective heat transfer in microtubes for slip flow
Date
2007-11-01
Author
Sun, Wei
Kakac, Sadik
Yazicioglu, Almila G.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
225
views
0
downloads
Cite This
The steady-state convective heat transfer for laminar, two-dimensional, incompressible rarefied gas flow in the thermal entrance region of a tube under constant wall temperature, constant wall heat flux, and linear variation of wall temperature boundary conditions are investigated by the finite-volume finite difference scheme with slip flow and temperature jump conditions. Viscous heating is also included, and the solutions are compared with theoretical results where viscous heating has been neglected. For these three boundary conditions for a given Brinkman number, viscous effects are presented in the thermal entrance region along the channel. The effects of Knudsen and Brinkman numbers on Nusselt number are presented in graphical and tabular forms in the thermal entrance region and under fully developed conditions. (c) 2007 Elsevier Masson SAS. All rights reserved.
Subject Keywords
Microscale heat transfer
,
Microtubes
,
Slip flow
URI
https://hdl.handle.net/11511/66712
Journal
INTERNATIONAL JOURNAL OF THERMAL SCIENCES
DOI
https://doi.org/10.1016/j.ijthermalsci.2007.01.020
Collections
Department of Mechanical Engineering, Article
Suggestions
OpenMETU
Core
Analysis of Transient Laminar Forced Convection of Nanofluids in Circular Channels
Sert, İsmail Ozan; Sezer Uzol, Nilay; Güvenç Yazıcıoğlu, Almıla; Kakaç, Sadık (2012-11-15)
In this study, forced convection heat transfer Characteristics of nanofluids are investigated by numerical analysis of incompressible transient laminar flow in a circular duct under step change in wall temperature and wall heat flux. The thermal responses of the system are obtained by solving energy equation under both transient and steady-state conditions for hydrodynamically fully developed flow. In the analyses, temperature dependent thermo-physical properties are also considered. In the numerical analys...
A pseudospectral analysis of laminar natural convection and heat transfer between two inclined parallel plates
Kasapoğlu, Serkan; Tarı, İlker; Department of Mechanical Engineering (2005)
Three dimensional laminar natural convection flow of and heat transfer in incompressible air between two inclined parallel plates are analyzed with the Boussinesq approximation by using spectral methods. The plates are assumed to be infinitely long in streamwise and spanwise directions. For these directions, periodic boundary conditions are used and for the normal direction constant wall temperature and no slip boundary conditions are used. Unsteady Navier-Stokes and energy equations are solved using a pseu...
EXPERIMENTAL AND NUMERICAL STUDY ON HEAT TRANSFER PERFORMANCE OF SQUARE, CYLINDRICAL AND PLATE HEAT SINKS IN EXTERNAL TRANSITION FLOW REGIME
İnci, Aykut Barış; Bayer, Özgür (2019-01-01)
Geometrical optimization of heat sinks with square, cylindrical and plate fins for heat transfer increase is numerically analyzed in transition regime external flow. The relations between the thermal characteristics of fins and boundary conditions such as free-stream velocity are investigated. Experimental studies are performed by using manufacturable fins to validate the numerical model. Heat transfer correlations are derived in order to determine average heat transfer coefficients over a certain range of ...
A numerical study on magneto-hydrodynamic mixed convection flow
Bozkaya, Canan (2014-01-01)
This paper, describes a study conducted to numerically investigate the two-dimensional, steady, laminar, magneto-hydrodynamic mixed convection flow and heat transfer characteristics in a lid-driven enclosure beneath an externally applied magnetic field. A solid square block is placed inside the cavity. The governing equations in the form of a stream function-vorticity-temperature formulation are solved numerically using the dual reciprocity boundary element method with constant elements. Treatment of nonlin...
NUMERICAL ANALYSIS OF CONVECTIVE HEAT TRANSFER OF NANOFLUIDS FOR LAMINAR FLOW IN A CIRCULAR TUBE
Kirez, Oguz; Güvenç Yazıcıoğlu, Almıla; KAKAÇ, SADIK (2012-11-15)
In this study, a numerical analysis of heat transfer enhancement of Alumina/water nanofluid in a steady-state, single-phase, laminar flow in a circular duct is presented for the case of constant wall heat flux and constant wall temperature boundary conditions. The analysis is performed with a newly suggested model (Corcione) for effective thermal conductivity and viscosity, which show the effects of temperature and nanoparticle diameter. The results for Nusselt number and heat transfer enhancement are prese...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
W. Sun, S. Kakac, and A. G. Yazicioglu, “A numerical study of single-phase convective heat transfer in microtubes for slip flow,”
INTERNATIONAL JOURNAL OF THERMAL SCIENCES
, pp. 1084–1094, 2007, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/66712.