A Mechanical Frequency Up-Conversion Mechanism for Vibration Based Energy Harvesters

2009-10-28
Zorlu, Ozge
Topal, Emre Tan
Külah, Haluk
This paper presents a new mechanical frequency up-conversion (FUC) mechanism for harvesting energy from external low frequency vibrations. The structure consists of a magnet placed on a support, a polystyrene cantilever carrying a pick-up coil, and a mechanical barrier which converts low frequency vibrations to a higher frequency, hence increasing the efficiency of the system. The tested structure proved to give 20.3 mV and 68.7 mu W RMS power output by up-converting 10 Hertz external vibration to 643 Hertz. The tests with different magnet configurations and cantilever lengths showed that horizontal cascading of the magnets improve the performance whereas an optimum cantilever length exits for the maximum generated power. An analytical model is also developed for the system, supporting the test results. The proposed structure is a good candidate to be realized by using microfabrication techniques in terms of generated voltage and power levels.

Suggestions

An electromagnetic micro power generator for low-frequency environmental vibrations
Külah, Haluk (2004-01-01)
This paper presents an electromagnetic (EM) vibrationto-electrical power generator which can efficiently scavenge energy from low-frequency external vibrations. The reported generator up-converts low-frequency environmental vibrations to a much higher frequency through a novel electro-mechanical frequency up-converter using a magnet, and hence provides efficient energy conversion even at low frequencies. Power is generated by means of electromagnetic induction using a magnet and coils on top of resonating c...
A Vibration-Based Electromagnetic Energy Harvester Using Mechanical Frequency Up-Conversion Method
Zorlu, Ozge; Topal, Emre Tan; Külah, Haluk (2011-02-01)
This paper presents a new vibration-based electromagnetic energy harvester using a mechanical frequency up-conversion method for harvesting energy from external low-frequency vibrations within a range of 1-10 Hz. The structure consists of a magnet placed on a diaphragm, a polystyrene cantilever carrying a pick-up coil, and a mechanical barrier which converts low-frequency vibrations to a higher frequency, hence increasing the efficiency of the system. The tested structure proved to generate 88.6 mV and 544....
A MEMS-based energy harvester for generating energy from non-resonant environmental vibrations
Zorlu, Ozge; Külah, Haluk (2013-11-01)
This paper presents a non-resonant vibration based electromagnetic MEMS energy harvester, which generates energy from low frequency vibrations with low displacement amplitude. The harvester is composed of an energy harvester chip, housing two electroplated copper micro coils realized on parylene cantilevers and a miniature NdFeB magnet with two mechanical barrier arms. The structure uses the mechanical frequency up conversion (mFupC) principle for energy generation. The non-resonant operation is maintained ...
An Electromagnetic Micro-Power Generator for Low Frequency Vibrations with Tunable Resonance
Türkyılmaz, Serhan; Muhtaroglu, A.; Külah, Haluk (2011-09-07)
This paper presents an electromagnetic (EM) micro-power generator with tunable resonance frequency which can harvest energy from low frequency environmental vibrations. The reported power generator up-converts low frequency environmental vibrations before mechanical-to-electrical energy conversion by utilizing two diaphragms with different resonance frequencies. Power is generated through electromagnetic induction by a magnet attached to the low frequency diaphragm, and a 50 turn, 2.1 Omega coil, and a magn...
AN ELECTROMAGNETIC ENERGY HARVESTER FOR LOW FREQUENCY AND LOW-G VIBRATIONS WITH A MODIFIED FREQUENCY UP CONVERSION METHOD
Zorlu, Ozge; Turkyilmaz, Serol; Muhtaroglu, Ali; Külah, Haluk (2013-01-24)
This paper presents a MEMS-based electromagnetic (EM) energy harvester for low frequency and low acceleration vibrations. The harvester is an improved version of [1], which operates with the frequency up conversion (FupC) principle. The former structure was composed of a low-frequency diaphragm carrying a magnet and 16 high-frequency cantilevers with coils. In this work, the phase difference between the coil outputs, leading to voltage cancellation in serial connection, has been eliminated by using a single...
Citation Formats
O. Zorlu, E. T. Topal, and H. Külah, “A Mechanical Frequency Up-Conversion Mechanism for Vibration Based Energy Harvesters,” 2009, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/48914.