Ultrahigh-Dynamic-Range Resonant MEMS Load Cells for Micromechanical Test Frames

2012-12-01
This paper presents a resonant double-ended tuning fork (DETF) force sensor with an experimentally demonstrated resolution of 7 nN and a compressive load range of 0.08 N, exceeding a dynamic range of 140 dB (100 parts per billion). The resonator has a scale factor of 216 kHz/N, a Q-factor exceeding 60 000 at 3-mtorr ambient pressure, and a zero-load resonant frequency of 47.6 kHz. The resonator is kept at resonance via a phase-locked loop composed of discrete elements. The sensor is implemented with a silicon-on-glass process with a 100-mu m-thick < 111 > silicon structural layer. The sensor and the complete readout circuit are fully embedded in a compact 65 mm x 52 mm printed circuit board (PCB). The out-of-plane parasitic modes of the DETF are also investigated with finite-element simulations and laser Doppler vibrometry experiments, and are verified to be outside of the device working range. The PCB is mounted on a microstage and coupled with an off-the-shelf displacement actuator to realize an economical, versatile, and robust micromechanical test frame with unprecedented combination of force and displacement resolution and range. [2012-0054]
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS

Suggestions

Modeling and fabrication of electrostatically actuated diaphragms for on-chip valving of MEMS-compatible microfluidic systems
Atik, Ali Can; Ozkan, Metin Dundar; Ozgur, Ebru; Külah, Haluk; Yıldırım, Ender (IOP Publishing, 2020-11-01)
This paper presents an analytical model to estimate the actuation potential of an electrostatic parylene-C diaphragm, processed on a glass wafer using standard microelectromechanical systems (MEMS) process technology, and integrable to polydimethylsiloxane (PDMS) based lab-on-a-chip systems to construct a normally-closed microvalve for flow manipulation. The accurate estimation of the pull-in voltage of the diaphragm is critical to preserve the feasibility of integration. Thus, we introduced an analytical m...
Ultrathick and high-aspect-ratio nickel microgyroscope using EFAB multilayer additive electroforming
Alper, Said Emre; Ocak, Ilker Ender; Akın, Tayfun (Institute of Electrical and Electronics Engineers (IEEE), 2007-10-01)
This paper presents a new approach for the development of a microgyroscope that has a 240-/mu m-thick multilayer electroformed-nickel structural mass and a lateral aspect ratio greater than 100. The gyroscope is fabricated using commercial multilayer additive electroforming process EFAB of Microfabrica, Inc., which allows defining the thickness of different structural regions, such as suspensions, proof mass, and capacitive electrodes, unlike many classical surface-micromachining technologies that require a...
Ultra wideband tightly coupled reflectarray antenna
Koldaş, Mutlu; Aydın Çivi, Hatice Özlem; Department of Electrical and Electronics Engineering (2022-2-08)
In this thesis, an ultra wideband tightly coupled dipole reflectarray antenna is de signed, fabricated, and measured. This reflectarray consists of a wideband log-periodic dipole array feed antenna and a reflecting surface. The unit element of the reflecting surface is a tightly coupled overlapping bowtie dipole attached with a delay line to approach ultra wideband aim. Infinite array approach and Floquet port excitation ap plied in unit cell simulations to obtain reflection phase curves versus the length o...
Design, fabrication, and characterization of micro thermal actuators
Gülcüler, Buğrahan; Azgın, Kıvanç; Department of Mechanical Engineering (2020-11)
This thesis presents the design, fabrication, and characterization of V-Type thermal actuators, which will be used in an actuator system that is planned to be a tensile and compressive test setup to characterize the expandible cells by the help of double- ended tuning fork resonators as a force sensing mechanism. Actuators are serially packed to increase the generated force by them while maintaining the same deflection values. They have been connected to the overall system by springs to create a force on te...
Temperature compensation of a capacitive mems accelerometer by using a mems oscillator
Kose, Talha; Azgın, Kıvanç; Akın, Tayfun (2016-02-25)
This study reports a temperature compensation method for a capacitive MEMS accelerometer by using a MEMS double-ended-tuning-fork (DETF) resonator integrated with the accelerometer structure on the same die. The proposed method utilizes the frequency information of the clamped-clamped DETF resonator which is oscillating in a closed-loop operation. In order to compensate the temperature dependence of the accelerometer output, frequency drift of the DETF resonator against changing temperature is used, i. e., ...
Citation Formats
K. Azgın and T. Akın, “Ultrahigh-Dynamic-Range Resonant MEMS Load Cells for Micromechanical Test Frames,” JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, pp. 1519–1529, 2012, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/48995.