Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Magnetic resonance current density imaging using one component of magnetic flux density
Date
2013-03-01
Author
Ersoz, Ali
Eyüboğlu, Behçet Murat
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
250
views
0
downloads
Cite This
Current density distribution generated inside a volume conductor by externally applied currents can be calculated by using spatial distribution of its magnetic flux density, . The imaging modality used to reconstruct images of the current density distribution is known as magnetic resonance current density imaging (MRCDI). In MRCDI, spatial distribution of the current-induced magnetic flux density is measured on a magnetic resonance imaging (MRI) platform. Calculation of current density distribution from magnetic flux density measurements requires all three components of . As only the component of which is in parallel with the main field of the MRI system can be measured, rotation of the subject is necessary to be able to acquire all three components of for a given current injection pattern. Rotating the subject inside the magnet is not trivial even for small-sized objects and remains as a strong limitation to clinical applicability of the technique. In this study, a novel MRCDI reconstruction algorithm using only one component of is proposed to eliminate the need for subject rotation. Reconstruction performance of the proposed algorithm is evaluated on numerical and experimental models. Images obtained by the proposed and the conventional MRCDI algorithms, which utilizes three components of , are compared.
Subject Keywords
Magnetic resonance imaging
,
Current density imaging
,
Electrical impedance tomography
URI
https://hdl.handle.net/11511/49213
Journal
INVERSE PROBLEMS IN SCIENCE AND ENGINEERING
DOI
https://doi.org/10.1080/17415977.2012.683790
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
Magnetic Resonance - Electrical Impedance Tomography (MR-EIT) Research at METU
Eyüboğlu, Behçet Murat (2006-09-01)
Following development of magnetic resonance current density imaging (MRCDI), magnetic resonance - electrical impedance tomography (MR-EIT) has emerged as a promising approach to produce high resolution conductivity images. Electric current applied to a conductor results in a potential field and a magnetic flux density distribution. Using a magnetic resonance imaging (MRI) system, the magnetic flux density distribution can be reconstructed as in MRCDI. The flux density is related to the current density distr...
Magnetic Resonance Electrical Impedance Tomography For Anisotropic Conductivity Imaging
Degirmenci, E.; Eyüboğlu, Behçet Murat (2008-11-27)
Magnetic Resonance Electrical Impedance Tomography (MREIT) brings high resolution imaging of true conductivity distribution to reality. MREIT images are reconstructed based on measurements of current density distribution and a surface potential value, induced by an externally applied current flow. Since biological tissues may be anisotropic, isotropic conductivity assumption, as it is adopted in most of MREIT reconstruction algorithms, introduces reconstruction inaccuracy. In this study, a novel algorithm i...
Equipotential projection based magnetic resonance electrical impedance tomography (mr-eit) for high resolution conductivity imaging
Özdemir, Mahir Sinan; Eyüboğlu, Behçet Murat; Department of Electrical and Electronics Engineering (2003)
In this study, a direct reconstruction algorithm for Magnetic Resonance Electrical Impedance Tomography (MR-EIT) is proposed and experimentally implemented for high resolution true conductivity imaging. In MR-EIT, elec trical impedance tomography (EIT) and magnetic resonance imaging (MRI) are combined together. Current density measurements are obtained making use of Magnetic Resonance Current Density Imaging (MR-CDI) techniques and peripheral potential measurements are determined using conventional EIT tech...
Distinguishability for Magnetic Resonance-Electric Impedance Tomography (MR-EIT)
Altunel, H.; Eyüboğlu, Behçet Murat; KÖKSAL, ADNAN (2006-09-01)
In magnetic resonance-electrical impedance tomography, magnetic flux density due to current injection is the measured quantity. Different conductivity distributions create different magnetic flux density distributions. Distinguishability for MR-EIT is defined using this fact. The definition is general and valid for 2D as well as 3D structures of any shape. It is not always possible to find an analytic expression for distinguishability. However, when a 2D cylindrical body with concentric inhomogeneity is con...
New technique for high resolution absolute conductivity imaging using magnetic resonance-electrical impedance tomography (MR-EIT)
Birgul, O; Eyüboğlu, Behçet Murat; Ider, YZ (2001-02-22)
A novel MR-EIT imaging modality has been developed to reconstruct high-resolution conductivity images with true conductivity value. In this new technique, electrical impedance tomography (EIT) and magnetic resonance imaging (MRI) techniques are simultaneously used. Peripheral voltages are measured using EIT and magnetic flux density measurements are determined using MRI. The image reconstruction algorithm used is an iterative one, based on minimizing the difference between two current density distributions ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Ersoz and B. M. Eyüboğlu, “Magnetic resonance current density imaging using one component of magnetic flux density,”
INVERSE PROBLEMS IN SCIENCE AND ENGINEERING
, pp. 184–196, 2013, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/49213.