Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
EROSION OF BASINS OF ATTRACTION - PERFORMANCE LOSSES IN SENSORIMOTOR LEARNING OF A ROBOT MANIPULATOR
Date
1992-08-13
Author
UNERI, M
Erkmen, Aydan Müşerref
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
192
views
0
downloads
Cite This
The sensorimotor learning phase is considered in the context of a collision-free dynamic path planning architecture for a robot manipulator in an uncertain task environment. The robot dynamics are effected by a vector field generated by partially known attractors and repellers, with uncertainty represented by entropy measures. The joint space is transformed into a cell space, and sensor uncertainty is taken proportional to cell size. The authors use a cell-to-cell mapping concept to develop a simple cell mapping algorithm to find the basin of attraction of each attractor cell. These basins constitute the valleys in cell space in which the training vectors should lie. Learning predictability is considered to reside in the nonfractal properties and width of basins of attraction, and predictability loss measures are developed from basin erosion under parameter changes.
Subject Keywords
Intelligent obstacle avoidance
,
Fractal basin erosion
,
Learning predictability
,
Multitarget path planning
URI
https://hdl.handle.net/11511/49227
DOI
https://doi.org/10.1109/isic.1992.225070
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Autonomous and manual driving of a multiple turret system in extreme environment
Yerlikaya, Ümit; Balkan, Raif Tuna; Department of Mechanical Engineering (2021-6)
In this thesis, firstly two methods are developed to obtain multi-dimensional configuration space for path planning problems. In typical cases, the path planning problems are solved directly in the 3-D workspace. However, this method is inefficient in handling the robots with various geometrical and mechanical restrictions. To overcome these difficulties, path planning may be formalized and solved in a new space which is called configuration space. In the first method, the point clouds of all the bodies of ...
Safe and Efficient Path Planning for Omni-directional Robots using an Inflated Voronoi Boundary
Aldahhan, Mohammed Rabeea Hashim; Schmidt, Klaus Verner (2019-11-01)
Path planning algorithms for mobile robots are concerned with finding a feasible path between a start and goal location in a given environment without hitting obstacles. In the existing literature, important performance metrics for path planning algorithms are the path length, computation time and path safety, which is quantified by the minimum distance of a path from obstacles. The subject of this paper is the development of path planning algorithms for omni-directional robots, which have the ability ...
Voluntary Behavior on Cortical Learning Algorithm Based Agents
Sungur, Ali Kaan; Sürer, Elif (2016-09-23)
Operating autonomous agents inside a 3D workspace is a challenging problem domain in real-time for dynamic environments since it involves online interaction with ever-changing decision constraints. This study proposes a neuroscience inspired architecture to simulate autonomous agents with interaction capabilities inside a 3D virtual world. The environment stimulates the operating agents based on their place and course of action. They are expected to form a life cycle composed of behavior chunks inside this ...
Scheduling approaches for parameter sweep applications in a heterogeneous distributed environment
Karaduman, Gülşah; Şener, Cevat; Alpdemir, Mahmut Nedim; Department of Computer Engineering (2010)
In this thesis, the focus is on the development of scheduling algorithms for Sim-PETEK which is a framework for parallel and distributed execution of simulations. Since it is especially designed for running parameter sweep applications in a heterogeneous distributed computational environment, multi-round and adaptive scheduling approaches are followed. Five different scheduling algorithms are designed and evaluated for scheduling purposes of Sim-PETEK. Development of these algorithms are arranged in a way t...
Design of a variable five-axes adjustable configuration robot manipulator
YUCEL, AS; Ersak, Aydın (1994-04-14)
A robot manipulator design is presented in this paper supplying a few kinematical configurations in a single structure which is in the mean time, reconfigurable for given tasks and hence making the level of flexibility and adaptability much higher for changing working environments
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. UNERI and A. M. Erkmen, “EROSION OF BASINS OF ATTRACTION - PERFORMANCE LOSSES IN SENSORIMOTOR LEARNING OF A ROBOT MANIPULATOR,” 1992, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/49227.