Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Helium-carbon relationships in geothermal fluids of western Anatolia, Turkey
Date
2008-01-15
Author
Mutlu, Halim
Güleç, Nilgün Türkan
Hilton, David R.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
213
views
0
downloads
Cite This
We investigate the helium, carbon and oxygen-hydrogen isotopic systematics and CO(2)/(3)He ratios of 8 water and 6 gas samples collected from 12 geothermal fields in western Anatolia (Turkey). (3)He/(4)He ratios of the samples (R) normalized to the atmospheric (3)He/(4)He ratio (R(A) = 1.39 x 10(-6)) range from 0.27 to 1.67 and are significantly higher than the crustal production value of 0.05. Fluids with relatively high R/R(A) values are generally found in areas of significant heat potential (Kizildere and Tuzla fields). CO(2)/(3)He ratios of the samples, ranging from 1.6 x 10(9) to 2.3 x 10(14), display significant variation and are mostly higher than values typical of an upper mantle source (2 X 109). The delta(13)C (CO(2)) and delta(13)C (CH(4)) values of all fluids vary from -8.04 to +0.35 parts per thousand and -25.80 to -23.92 parts per thousand (vs. PDB), respectively. Stable isotope values (delta(18)O-delta D) of the geothermal waters are conformable with the Mediterranean Meteoric Water Line and indicate a meteoric origin. The temperatures calculated by gas geothermometry are significantly higher than estimates from chemical geothermometers, implying that either equilibrium has not been attained for the isotope exchange reaction or that isotopic equilibration was disturbed due to gas additions en route to the surface. Evaluation of He-CO(2) abundances indicates that hydrothermal degassing and calcite precipitation (controlled probably by adiabatic cooling due to degassing) significantly fractionate the elemental ratio (CO(2)/(3)He) in geothermal waters. Such processes do not affect gas phase samples to anywhere near the same extent. For the gas samples, mixing between mantle and various crustal sources appears to be the main control on the observed He-C systematics: however, crustal inputs dominate the CO(2) inventory. Considering that limestone is the main source of carbon (similar to 70 to 97% of the total carbon inventory), the carbon flux from the crust is found to be at least 20 times that from the mantle. As to the He-inventory, the mantle-derived component is found to vary up to 21% of the total He content and is probably transferred to the crust by fluids degassed from deep mantle melts generated in association with the elevated geotherm and adiabatic melting accompanying current extension. The range of (3)He/enthalpy ratios (0.000032 to 0.19 x 10(-12) cm(3) STP/J) of fluids in western Anatolia is consistent with the release of both helium and heat from contemporary additions of mantle-derived magmas to the crust. The deep faults appear to have facilitated the deep circulation of the fluids and the transport of mantle volatiles and heat to the surface.
Subject Keywords
Geology
,
Geochemistry and Petrology
URI
https://hdl.handle.net/11511/49298
Journal
CHEMICAL GEOLOGY
DOI
https://doi.org/10.1016/j.chemgeo.2007.10.021
Collections
Department of Geological Engineering, Article
Suggestions
OpenMETU
Core
Hydrogeochemical outline of thermal waters and geothermometry applications in Anatolia (Turkey)
Mutlu, Halim; Güleç, Nilgün Türkan (Elsevier BV, 1998-10-01)
The chemical compositions of a total of 120 thermal water samples from four different tectonically distinct regions (Central, North, East and West Anatolia) of Turkey are presented and assessed in terms of geothermal energy potential of each region through the use of chemical geothermometers. Na-Ca-HCO3, type waters are the dominant water types in all the regions except that Na-Cl type waters are typical for the coastal areas of West Anatolia and for a few inland areas of West and Central Anatolia where dee...
Source components and magmatic processes in the genesis of Miocene to Quaternary lavas in western Turkey: constraints from HSE distribution and Hf-Pb-Os isotopes
Aldanmaz, Ercan; Pickard, Megan; Meisel, Thomas; Altunkaynak, Şafak; Sayıt, Kaan; Sen, Pinar; Hanan, Barry B.; Furman, Tanya (Springer Science and Business Media LLC, 2015-08-01)
Hf-Pb-Os isotope compositions and highly siderophile element (HSE) abundance variations are used to evaluate the mantle source characteristics and possible effects of differentiation processes in lavas from western Turkey, where the eruption of Late Miocene to Quaternary OIB-type intraplate mafic alkaline lavas followed pre-Middle Miocene convergent margin-type volcanism. Concentrations of Os, Ir, and Ru (IPGE) in the OIB-type intraplate lavas decrease with fractionation for primitive melts (MgO > 10 wt%), ...
Genetic investigation and comparison of Kartaldag and Madendag epithermal gold deposits in Canakkale, NW Turkey
Unal-Imer, Ezgi; Güleç, Nilgün Türkan; Kuşcu, İlkay; Fallick, Anthony E. (Elsevier BV, 2013-09-01)
Two epithermal gold deposits (Kartaldag and Madendag) located in NW Turkey have been characterized through the detailed examinations involving geologic, mineralogical, fluid inclusion, stable isotope, whole-rock geochemistry, and geochronology data.
Activation of some Turkish bentonites to improve their drilling fluid properties
Erdogan, B; Demirci, S (Elsevier BV, 1996-01-01)
In this study three Turkish bentonites (Samas, Canbensan and Ceylan) were tested for their potential use in drilling fluids. The drilling-mud quality of the bentonites from Canbensan and Ceylan were significantly improved with some additives such as salts (Na2CO3, Na2SO4, AI(2)(SO4)(3)), gypsum, high molecular weight polymers, polyacrylamide, polyacrylic and sodium carboxymethyl cellulose. Salts were found not to be as effective as polymeric materials for this purpose.
Helium isotope variations in Turkey: relationship to tectonics, volcanism and recent seismic activities
Güleç, Nilgün Türkan; Mutlu, H (2002-07-01)
The distribution of helium isotope ratios in the various tectonic provinces of Turkey is examined through a synthesis of previously published data and the results of a recent survey along the North Anatolian Fault Zone (NAFZ) following the catastrophic 1999 earthquakes. The R/R-A values (where R = sample He-3/He-4 and RA = air He-3/He-4) cover a wide range from 0.05 to 7.87, and the mantle-derived helium is clearly identified in most locations, The mantle-derived component is high (> 50% of total He) in (a)...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. Mutlu, N. T. Güleç, and D. R. Hilton, “Helium-carbon relationships in geothermal fluids of western Anatolia, Turkey,”
CHEMICAL GEOLOGY
, pp. 305–321, 2008, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/49298.