Three-dimensional non-isothermal model development of high temperature PEM Fuel Cells

2018-06-07
Caglayan, Dilara Gulcin
Sezgin, Berna
DEVRİM, YILSER
Eroğlu, İnci
A three-dimensional non-isothermal mathematical model is developed in a triple mixed serpentine flow multichannel domain for a high temperature PEM Fuel Cell having a phosphoric acid doped PBI membrane as electrolyte and an active area of 25 cm(2) within Comsol Multiphysics. The inlet temperatures of cathode and anode reactants are taken as 438 K. Model predicts pressure, and temperature distribution along the channels and membrane current density distribution over the membrane electrodes. The model results are obtained at two different operation voltages, 0.45 V and 0.60 V. Resulting average current densities are respectively 0.313 A cm(-2) and 0.224 A cm(-2). The non-isothermal model results are compared to isothermal model results from a previous study and various other single channel non-isothermal model results available in the literature. The pressure drop at cathode compartment is predicted to be 6500 Pa, whereas it is found to be 6400 Pa for the isothermal model. The temperature difference within the system is found to be 0.18 K for the operation voltage of 0.6 V, whereas this value increases to 0.31 K for the operation voltage of 0.45 V. The temperature difference isocontours are illustrated for the whole cell. Considering changes in temperature, one can employ isothermal operation assumption for this system as an approximation and simplification for the governing equations, since the variation in the temperature within the cell is less than 1 K. It should be emphasized that multichannel model predictions are more realistic compared to single channel models. The model developed here can be extended to larger electrode active area and different multichannel configurations. (C) 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY

Suggestions

Three-dimensional modeling of a high temperature polymer electrolyte membrane fuel cell at different operation temperatures
Caglayan, Dilara Gulcin; Sezgin, Berna; DEVRİM, YILSER; Eroğlu, İnci (2016-06-22)
A three-dimensional model for a high temperature polymer electrolyte membrane (PEM) fuel cell having an active area of 25 cm(2) is developed. Triple mixed serpentine flow channel single cell with phosphoric acid doped polybenzimidazole (FBI) membrane is used in the model. Steady-state, isothermal, single phase assumptions are defined for the system. The model is simulated at different temperatures ranging from 100 to 180 degrees C to investigate the influence of operation temperature on the performance of t...
Electrocatalyst development and modeling of nonisothermal two-phase flow for PEM fuel cells
Fıçıcılar, Berker; Eroğlu, İnci; Department of Chemical Engineering (2011)
A macro-homogeneous, nonisothermal, two-phase, and steady state mathematical model is developed to investigate water and thermal management in polymer electrolyte membrane (PEM) fuel cells. An original two-phase energy balance approach is used to catch the thermal transport phenomena in cases when there is a signi cant temperature di erence between the fuel cell temperature and the reactants inlet temperatures like during cold start-up. Model considers in depth electrode kinetics for both anode and cathode ...
Modeling and sensitivity analysis of high temperature PEM fuel cells by using Comsol Multiphysics
Sezgin, Berna; Caglayan, Dilara Gulcin; DEVRİM, YILSER; Steenberg, Thomas; Eroğlu, İnci (2016-06-22)
The objective of this study is to observe the effect of the critical design parameters, velocities of inlet gases (hydrogen and air) and the conductivity of polymer membrane, on the performance of a high temperature PEM fuel cell. A consistent and systematic mathematical model is developed in order to study the effect of these parameters. The model is applied to an isothermal, steady state, three-dimensional PEM fuel cell in order to observe concentration profiles, current density profiles and polarization ...
Numerical modeling and analyses of anisotropic diffusion and stresses in polymer electrolyte fuel cell
Mehrtash, Mehdi; Tarı, İlker; Department of Mechanical Engineering (2017)
A two dimensional, half-cell, non-isothermal, multi-phase model of a polymer electrolyte fuel cell (PEFC) is developed. The model accounts for the acting clamping force on the cell with accompanying effects on gas transport properties and contact resistances. Spatial variations of anisotropic structural and physical properties of gas diffusion layers (GDLs) in both in-plane and through-plane directions are considered. The developed mechanistic model is validated by comparıng its results with the experimenta...
Development of polybenzimidazole/graphene oxide composite membranes for high temperature PEM fuel cells
Uregen, Nurhan; Pehlivanoglu, Kubra; Ozdemir, Yagmur; DEVRİM, YILSER (2017-01-26)
In this study, phosphoric acid doped Polybenzimidazole/Graphene Oxide (PBI/GO) nano composite membranes were prepared by dispersion of various amounts of GO in PBI polymer matrix followed by phosphoric acid doping for high temperature proton exchange membrane fuel cell (HT-PEMFC) application. The structure of the PBI/GO composite membranes was investigated by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and by thermogravimetric analysis (TGA). The introduction of GO into the FBI polymer matri...
Citation Formats
D. G. Caglayan, B. Sezgin, Y. DEVRİM, and İ. Eroğlu, “Three-dimensional non-isothermal model development of high temperature PEM Fuel Cells,” INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, pp. 10834–10841, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/50449.