Density functional theory calculations for [C2H4N2O6]((n)) (n=0,+1,-1)

2006-08-21
Turker, Lemi
Erkoç, Şakir
The structural and electronic properties of neutral and mono ionic structures of isolated ethylene glycol dinitrate (EGDN) [C2H4N2O6]((n)) (n = 0, +1, -1) have been investigated by performing density functional theory calculations at B3LYP level. The optimum geometry, vibrational frequencies, electronic structure and some thermo dynamical values of the structures considered have been obtained in their ground states. The calculations reveal that as the charge develops the bond lengths and angles change. In the anionic case charge accumulation causes NO2 elimination as a result of esteric O-N bond cleavage.
JOURNAL OF HAZARDOUS MATERIALS

Suggestions

An ab initio study on ethylenedinitramine and its monovalent ions
Türker, Burhan Lemi (Elsevier BV, 2005-02-14)
An explosive material, ethylenedinitramine (EDNA), its mono and di aci forms, as well as its monovalent cation and anion forms have been considered for 6-31G (UHF) type ab initio quantum chemical treatment in order to investigate the stability of EDNA in the neutral form and when charges develop on it exposed to electrical fields during the storage, handling or explosion process. The calculations indicate stable species. The aci forms are less stable than EDNA itself and the anion form is more stable than t...
Quantum chemical treatment of cyanogen azide and its univalent and divalent ionic forms
Türker, Burhan Lemi; Atalar, Taner (Elsevier BV, 2008-05-30)
An explosive material, cyanogen azide (CN4) and its univalent and divalent anionic and cationic forms have been studied quantum chemically by using different theoretical approaches. In this study, the structures considered have been screened for their relative stabilities. Also, they have been investigated whether the charged forms play a role in the usual explosion process or any electrical charging during storage cause explosion. Various quantum chemical properties are obtained and discussed. It has been ...
Sorption of radioactive cesium and barium ions onto solid humic acid
Celebi, O.; Kilikli, A.; ERTEN, HASAN NİYAZİ (Elsevier BV, 2009-09-15)
In this study, the sorption behavior of two important fission product radionuclides ((137)Cs and (140)Ba) onto sodium form of insolubilized humic acid (INaA) were investigated as a function of time, cation concentration and temperature, utilizing the radiotracer method. The sorption processes are well described by both Freundlich and Dubinin-Radushkevich type isotherms. Thermodynamic constants such as: free energy (Delta G(ads)), enthalpy (Delta H(ads)), entropy (Delta S(ads)) of adsorption were determined....
Evaluation of PCB dechlorination pathways in anaerobic sediment microcosms using an anaerobic dechlorination model
Demirtepe, Hale; Kjellerup, Birthe; Sowers, Kevin R.; İmamoğlu, İpek (Elsevier BV, 2015-10-15)
A detailed quantitative analysis of anaerobic dechlorination (AD) pathways of polychlorinated biphenyls (PCBs) in sediment microcosms was performed by applying an anaerobic dechlorination model (ADM). The purpose of ADM is to systematically analyze changes in a contaminant profile that result from microbial reductive dechlorination according to empirically determined dechlorination pathways. In contrast to prior studies that utilized modeling tools to predict dechlorination pathways, ADM also provides quant...
Catalytic combustion of ethyl acetate
GÜRMEN ÖZÇELİK, TUĞBA; Atalay, Sueheyda; Alpay, Erden (Elsevier BV, 2007-01-01)
The catalytic combustion of ethyl acetate over prepared metal oxide catalysts was investigated. CeO, Co2O3, Mn2O3, Cr2O3, and CeO-Co2O3 catalysts were prepared on monolith supports and they were tested. Before conducting the catalyst experiments, we searched for the homogeneous gas phase combustion reaction of ethylacetate. According to the homogeneous phase experimental results, 45% of ethylacetate was converted at the maximum reactor temperature tested (350 degrees C). All the prepared catalysts were test...
Citation Formats
L. Turker and Ş. Erkoç, “Density functional theory calculations for [C2H4N2O6]((n)) (n=0,+1,-1),” JOURNAL OF HAZARDOUS MATERIALS, pp. 164–169, 2006, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/51298.