Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Sorption of radioactive cesium and barium ions onto solid humic acid
Download
index.pdf
Date
2009-09-15
Author
Celebi, O.
Kilikli, A.
ERTEN, HASAN NİYAZİ
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
210
views
0
downloads
Cite This
In this study, the sorption behavior of two important fission product radionuclides ((137)Cs and (140)Ba) onto sodium form of insolubilized humic acid (INaA) were investigated as a function of time, cation concentration and temperature, utilizing the radiotracer method. The sorption processes are well described by both Freundlich and Dubinin-Radushkevich type isotherms. Thermodynamic constants such as: free energy (Delta G(ads)), enthalpy (Delta H(ads)), entropy (Delta S(ads)) of adsorption were determined. It was found that Ba(2+) was adsorbed five times more than Cs(+) onto structurally modified humic acid and kinetic studies indicated that adsorption behavior of both ions obey the pseudo second order rate law. The effect of pH change on sorption was also examined. FTIR and solid-state carbon NMR ((13)CNMR) spectroscopic techniques were used to understand the structural changes during insolubilization process. Quantitative determination of adsorption sites was carried out using potantiometric titration.
Subject Keywords
Environmental Engineering
,
Waste Management and Disposal
,
Pollution
,
Health, Toxicology and Mutagenesis
,
Environmental Chemistry
URI
https://hdl.handle.net/11511/67089
Journal
JOURNAL OF HAZARDOUS MATERIALS
DOI
https://doi.org/10.1016/j.jhazmat.2009.02.090
Collections
Department of Chemistry, Article
Suggestions
OpenMETU
Core
Quantum chemical treatment of cyanogen azide and its univalent and divalent ionic forms
Türker, Burhan Lemi; Atalar, Taner (Elsevier BV, 2008-05-30)
An explosive material, cyanogen azide (CN4) and its univalent and divalent anionic and cationic forms have been studied quantum chemically by using different theoretical approaches. In this study, the structures considered have been screened for their relative stabilities. Also, they have been investigated whether the charged forms play a role in the usual explosion process or any electrical charging during storage cause explosion. Various quantum chemical properties are obtained and discussed. It has been ...
Sorption/desorption of Cs on clay and soil fractions from various regions of Turkey
Aksoyoglu, S.; Göktürk, H. (Elsevier BV, 1988-2)
The sorption desorption behaviour of Cs ion in the concentration region of 10−8 to 10−4 meqml−1 have been studied using clay and soil fractions from various regions of Turkey. The sorption curves for all the material studied show similar behaviour indicating at least two different sorption processes. One with high and the other with low distribution coefficients. The results of desorption studies indicate that Cs cation is to a large extent attached to the solid material in a reversible manner. The adsorpti...
Quantum chemical study on 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one (NTO) and some of its constitutional isomers
Türker, Burhan Lemi; Atalar, Taner (Elsevier BV, 2006-10-11)
Presently, certain isomeric compounds of NTO and their tautomers have been investigated by performing density functional theory (DFT) calculations at B3LYP/6-31G(d,p) and ROB3P86/6-311G(d,p) levels and also ab initio calculations at RHF/6-311G(d,p) level. The optimized geometries, vibrational frequencies, electronic structures and some thermodynamical values for the presently considered NTO isomers have been obtained in their ground states. Also, detonation performances were evaluated by the Kammlet-Jacobs ...
Catalytic combustion of ethyl acetate
GÜRMEN ÖZÇELİK, TUĞBA; Atalay, Sueheyda; Alpay, Erden (Elsevier BV, 2007-01-01)
The catalytic combustion of ethyl acetate over prepared metal oxide catalysts was investigated. CeO, Co2O3, Mn2O3, Cr2O3, and CeO-Co2O3 catalysts were prepared on monolith supports and they were tested. Before conducting the catalyst experiments, we searched for the homogeneous gas phase combustion reaction of ethylacetate. According to the homogeneous phase experimental results, 45% of ethylacetate was converted at the maximum reactor temperature tested (350 degrees C). All the prepared catalysts were test...
Evaluation of PCB dechlorination pathways in anaerobic sediment microcosms using an anaerobic dechlorination model
Demirtepe, Hale; Kjellerup, Birthe; Sowers, Kevin R.; İmamoğlu, İpek (Elsevier BV, 2015-10-15)
A detailed quantitative analysis of anaerobic dechlorination (AD) pathways of polychlorinated biphenyls (PCBs) in sediment microcosms was performed by applying an anaerobic dechlorination model (ADM). The purpose of ADM is to systematically analyze changes in a contaminant profile that result from microbial reductive dechlorination according to empirically determined dechlorination pathways. In contrast to prior studies that utilized modeling tools to predict dechlorination pathways, ADM also provides quant...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
O. Celebi, A. Kilikli, and H. N. ERTEN, “Sorption of radioactive cesium and barium ions onto solid humic acid,”
JOURNAL OF HAZARDOUS MATERIALS
, pp. 695–703, 2009, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/67089.