Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Energetics of arsenic terminated GaAs(001) surfaces
Date
2000-09-01
Author
Erkoç, Şakir
Kokten, H
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
173
views
0
downloads
Cite This
We have investigated systematically the energetics of arsenic terminated GaAs(001) surfaces, Available surface models proposed in the literature have been considered, and relaxation and surface energies of each model have been calculated using an empirical many-body potential energy function comprising two and three-body atomic interactions.
Subject Keywords
GaAs(001) surfaces
,
Relaxation energy
,
Surface energy
,
Empirical potentials
URI
https://hdl.handle.net/11511/51308
Journal
INTERNATIONAL JOURNAL OF MODERN PHYSICS C
DOI
https://doi.org/10.1142/s0129183100001048
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
Melting and fragmentation of nickel nanoparticles: Molecular-dynamics simulations
Gunes, B; Erkoç, Şakir (2000-12-01)
Melting and fragmentation behaviors of Ni-429 cluster have been studied with molecular-dynamics simulations using a size-dependent empirical model potential energy function. To monitor thermal behaviors of the cluster, we calculated some physical quantities such as average potential energy per atom, specific heat, radial atomic distribution, bond length distribution, average interatomic distance, nearest neighbor distance and average coordination number as a function of temperature. The roles of the surface...
Gold deposition on GaAs(001) surfaces: Molecular-dynamics simulations
Erkoç, Şakir; Amirouche, L; Rouaiguia, L (2002-07-01)
We have simulated the gold deposition on arsenic and gallium terminated GaAs(001) surfaces at low and room temperatures. It has been found that gallium terminated surface is relatively less stable in comparison to the arsenic terminated surface. On the other hand, a single gold adatom on the surface has different characteristics than full coverage gold atoms on the surface; a single gold atom diffuses into the surface at room temperature. Simulations have been performed by considering classical molecular-dy...
Adsorption and dissociation of PH3 on SiGe(100) (2x1) surface
Turkmenoglu, Mustafa; Katırcıoğlu, Şenay (World Scientific Pub Co Pte Lt, 2008-06-01)
The most stable structures for the adsorption and dissociation of phosphine (PH3) on SiGe(100) (2 x 1) surface have been investigated by relative total energy calculations based on density functional theory. According to the optimization calculations, PH3 is adsorbed on the Si (down) and Ge (down) site of the Ge-Si and Ge-Ge dimers on SiGe surface, respectively. The PH2 and H products have been found to be thermodynamically favored in the dissociation path of PH3 on SiGe surface when the system is thermally...
Quantum chemical calculations of warfarin sodium, warfarin and its metabolites
Tekin, Emine Deniz (Calisir); ERKOÇ, Figen; YILDIZ, İLKAY; Erkoç, Şakir (2008-07-01)
The structural, vibrational and electronic properties of warfarin sodium, warfarin and its metabolites have been investigated theoretically by performing the molecular mechanics (MM+ force field), the semi-empirical self-consistent-field molecular-orbital (AM1), and density functional theory calculations. The geometry of the molecules have been optimized, the vibrational dynamics and the electronic properties of the molecules have been calculated in their ground state in gas phase.
Mechanical properties of CdZnTe nanowires under uniaxial stretching and compression: A molecular dynamics simulation study
Kurban, Mustafa; Erkoç, Şakir (2016-09-01)
Structural and mechanical properties of ternary CdZnTe nanowires have been investigated by performing molecular dynamics simulations using an atomistic potential. The simulation procedures are carried out as uniaxial stretching and compression at 1 K and 300 K. The results demonstrate that the mechanical properties of CdZnTe ternary nanowires show significantly a dependence on size and temperature under uniaxial stretching and compression.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Ş. Erkoç and H. Kokten, “Energetics of arsenic terminated GaAs(001) surfaces,”
INTERNATIONAL JOURNAL OF MODERN PHYSICS C
, pp. 1225–1237, 2000, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/51308.