Flow induced polymer-filler interactions: Bound polymer properties and bound polymer-free polymer phase separation and subsequent phase inversion during mixing

1990-11
Akay, G.
The irreversible absorption of macromolecules on to solid filler particles during mixing in the melt is investigated. The molecular weight and concentration dependence of the absorbed layer thickness are evaluated and the chemical and morphological nature of the irreversibly absorbed polymer (bound polymer) are determined. It is found that the thickness of the bound polymer is not only dependent on the filler concentration but also dependent on polymer molecular weight. Bound polymer in high density polyethylene/colloidal silica systems is more amorphous and contains higher concentration of oxidation products (which are induced by a mechanochemical reaction during mixing) when compared with free polymer. As a result of bound polymer formation, flow induced crystallization and polymer entrapment during mixing, a phase separation between bound polymer and free polymer takes place which eventually leads to a liquid to solid phase inversion when the phase volume of the solids exceed a critical value under isothermal conditions. If the mixing is continued after phase inversion, the particle size of the newly formed powder is reduced and particle size distribution, is narrowed. This process of phase inversion and subsequent size reductions are termed as crumbling which can take place at filler concentrations well below the expected maximum packing fraction of solids, if the filler particle size is small and/or the molecular weight of the polymer is high. Crumbling phenomena are utilized in the agglomeration of fine powders and microencapsulation of solids and/or liquids.
Polymer Engineering and Science

Suggestions

Poly(ethylene terephthalate)/Carbon Nanotube Composites Prepared With Chemically Treated Carbon Nanotubes
Yesil, Sertan; Bayram, Göknur (Wiley, 2011-07-01)
Surfaces of multiwalled carbon nanotubes (CNT) were functionalized by treatment with strong acid mixture (purification) followed by modification with sodium dodecyl sulfate, poly(ethylene glycol) (PEG), and diglycidyl ether of Bisphenol A (DGEBA). Poly(ethylene terephthalate) (PET)-based conductive polymer composites were prepared by using these CNT by means of melt mixing with a twin screw extruder. Amount of carboxylic acid groups on the CNT surface increased after acid treatment but decreased with surfac...
Impact modified polyamide-6/organoclay nanocomposites: Processing and characterization
Isik, Isil; YILMAZER, ÜLKÜ; Bayram, Göknur (Wiley, 2008-02-01)
The effects of melt state compounding of ethylene-butyl acrylate-maleic anhydride (E-BA-MAH) terpolymer and/or three types of organoclays (Cloisitel(R) 15A, 25A, and 3013) on thermal and mechanical properties and morphology of polyamide-6 are investigated. E-BA-MAH formed spherical domains in the materials to which it is added, and increased the impact strength, whereas the organoclays decreased the impact strength. In general, the organoclays increased the tensile strength (except for Cloisite 15A), Young'...
Polymerization of 1,2-epoxy-4-epoxyethylcyclohexane
Usanmaz, Ali; Asaid, Adel (Wiley, 1986-12)
Radiation‐induced polymerization of 1,2‐epoxy‐4‐epoxyethylcyclohexane (EECH) has been carried out at different temperatures in solid and liquid states. Activation energy was calculated from Arrhenius plot and ionic mechanism was proposed. Molecular weights for some polymer samples were determined by cryscopic method and compared with their intrinsic viscosities. Cationic polymerization of EECH initiated by BF3 · O(C2H5)2 and anionic polymerization initiated by NaOH are also studied. Two epoxy rings can be o...
Microwave-assisted simultaneous synthesis of conducting, non-conducting and cross-linked polymers from sodium 2,4,6-tribromophenolate and LiOH
Celik, Gueler Bayrakli; Kisakuerek, Duygu (Informa UK Limited, 2007-01-01)
Poly(dibromophenylene oxide) (P) and conducting polymer (CP) and/or cross-linked polymer (CLP) were synthesized simultaneously from sodium 2,4,6-tribromophenol ate and LiOH by microwave energy in a very short time interval. Polymerizations were carried out (i) under constant microwave energy and constant amount of water with different time intervals ranging from I to 20 min, or (ii) at constant time intervals and constant amount of water with variation of microwave energy ranging from 90 to 900 W, or (iii) ...
Viscoelastic properties of reactive and non-reactive blends of ethylene-methyl acrylate copolymers with styrene-maleic anhydride copolymer
Bayram, G; Yılmazer, Ülkü; Xanthos, M (Wiley, 2001-02-01)
The effects of compatibilizing reactions on the viscoelastic properties and morphology of ethylene-methyl acrylate copolymers were studied. Potentially reactive blends of styrene-maleic anhydride copolymer (SMAH) and a terpolymer of ethylene/methyl acrylate/glycidyl methacrylate (E-MA-GMA) were compared with a nonreactive blend of SMAH and an ethylene/methyl acrylate (E-MA) copolymer with similar rheological properties. Melt mixing was carried out in a batch mixer and in a co-rotating twin screw extruder. T...
Citation Formats
G. Akay, “Flow induced polymer-filler interactions: Bound polymer properties and bound polymer-free polymer phase separation and subsequent phase inversion during mixing,” Polymer Engineering and Science, pp. 1361–1372, 1990, Accessed: 00, 2020. [Online]. Available: https://onlinelibrary.wiley.com/doi/epdf/10.1002/pen.760302106.