MASS TRANSFER AND CHEMICAL REACTION IN A POWER-LAW SPHERE AT INTERMEDIATE REYNOLDS NUMBERS

1990-3
Gürkan, Türker
The relevant mass transport equations have been numerically solved to determine the effect of power-law behavior in the dispersed phase. It is concluded that increased pseudoplasticity in the dispersed phase causes decreases in the total amount of mass transferred, C¯lt, to the droplet because of reduced circulation velocities. Maximum decreases in C¯lt, with increasing pseudoplasticity are realized for larger Peclet number, larger values of the ratio of the viscosity of the dispersed to continuous phase and for smaller Reynolds number. Substantial increases in the total amount of mass transfer are predicted as the regime changes from creeping to that of intermediate Reynolds number flow due to increased contribution of forced convection.
Chemical Engineering Communications

Suggestions

Numerical simulation of radiating flows
Karaismail, Ertan; Selçuk, Nevin; Department of Chemical Engineering (2005)
Predictive accuracy of the previously developed coupled code for the solution of the time-dependent Navier-Stokes equations in conjunction with the radiative transfer equation was first assessed by applying it to the prediction of thermally radiating, hydrodynamically developed laminar pipe flow for which the numerical solution had been reported in the literature. The effect of radiation on flow and temperature fields was demonstrated for different values of conduction to radiation ratio. It was found that ...
MOTION OF A CIRCULATING POWER-LAW DROP TRANSLATING THROUGH NEWTONIAN FLUIDS AT INTERMEDIATE REYNOLDS NUMBERS
Gürkan, Türker (Informa UK Limited, 1989-6)
The equations of motion for the flow of a power-law fluid sphere in a Newtonian continuous phase have been approximately satisfied by Galerkin's method: External and internal stream functions have been obtained for the following ranges of variables: 10-50 for Re0, 0.1-1000 for the viscosity ratio parameters, X, and 0.6-1.0 for the dispersed phase power-law index, ni,. It is predicted that pseudoplasticity in the dispersed phase causes a reduction in the circulation within the drop and that it has a minor ef...
Experimental investagation of drag reduction effects of polymer additives on turbulent pipe flow
Zeybek, Şerife; Uludağ, Yusuf; Department of Chemical Engineering (2005)
Since the discovery of the drag reduction effects of even small amount of macromolecules in solutions in turbulent pipe flows, there have been many experimental and theoretical studies in order to understand mechanisms behind this phenomenon. Theories have been proposed based on the observations on the change in the characteristics of the turbulent flow near the pipe wall where friction of the momentum transfer between the flow and the conduit takes place. In this study drag reduction in fully developed tur...
Quantum chemical simulation of nitric oxide reduction by ammonia (scr reaction) on v2o5 / tio2 catalyst surface
Soyer, Sezen; Önal, Işıl; Department of Chemical Engineering (2005)
The reaction mechanism for the selective catalytic reduction (SCR) of nitric oxide by ammonia on (010) V2O5 surface represented by a V2O9H8 cluster was simulated by density functional theory (DFT) calculations. The computations indicated that SCR reaction consisted of three main parts. In the first part ammonia activation on Brønsted acidic V-OH site as NH4+ species by a nonactivated process takes place. The second part includes the interaction of NO with pre-adsorbed NH4 + species to eventually form nitros...
FINITE VOLUME SIMULATION OF 2-D STEADY SQUARE LID DRIVEN CAVITY FLOW AT HIGH REYNOLDS NUMBERS
YAPICI, KERİM; Uludağ, Yusuf (FapUNIFESP (SciELO), 2013-10-01)
In this work, computer simulation results of steady incompressible flow in a 2-D square lid-driven cavity up to Reynolds number (Re) 65000 are presented and compared with those of earlier studies. The governing flow equations are solved by using the finite volume approach. Quadratic upstream interpolation for convective kinematics (QUICK) is used for the approximation of the convective terms in the flow equations. In the implementation of QUICK, the deferred correction technique is adopted. A non-uniform st...
Citation Formats
T. Gürkan, “MASS TRANSFER AND CHEMICAL REACTION IN A POWER-LAW SPHERE AT INTERMEDIATE REYNOLDS NUMBERS,” Chemical Engineering Communications, pp. 73–86, 1990, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/51405.