Bone Formation from Porcine Dental Germ Stem Cells on Surface Modified Polybutylene Succinate Scaffolds

2016
Abay, Nergis
Gurel Pekozer, Gorke
Ramazanoglu, Mustafa
Kose, Gamze Torun
Designing and providing a scaffold are very important for the cells in tissue engineering. Polybutylene succinate (PBS) has high potential as a scaffold for bone regeneration due to its capacity in cell proliferation and differentiation. Also, stem cells from 3rd molar tooth germs were favoured in this study due to their developmentally and replicatively immature nature. In this study, porcine dental germ stem cells (pDGSCs) seeded PBS scaffolds were used to investigate the effects of surface modification with fibronectin or laminin on these scaffolds to improve cell attachment, proliferation, and osteogenic differentiation for tissue engineering applications. The osteogenic potentials of pDGSCs on these modified and unmodified foams were examined to heal bone defects and the effects of fibronectin or laminin modified PBS scaffolds on pDGSC differentiation into bone were compared for the first time. For this study, MTS assay was used to assess the cytotoxic effects of modified and unmodified surfaces. For the characterization of pDGSCs, flow cytometry analysis was carried out. Besides, alkaline phosphatase (ALP) assay, von Kossa staining, real-time PCR, CM-Dil, and immunostaining were applied to analyze osteogenic potentials of pDGSCs. The results of these studies demonstrated that pDGSCs were differentiated into osteogenic cells on fibronectin modified PBS foams better than those on unmodified and laminin modified PBS foams.
Stem Cells International

Suggestions

Surface functionalized poly-lactic acid (PLA) scaffolds for bone tissue engineering
Monirizad, Mahsa; Keskin, Dilek; Ermiş Şen, Menekşe; Department of Engineering Sciences (2022-2)
The need for more effective tissue grafts for orthopedic applications is one of the main research areas of tissue engineering. In bone tissue engineering (BTE), scaffolds that can mimic bone tissue both from mechanical and biological perspectives are investigated mostly. In this study, it was aimed to develop a BTE scaffold that can mimic bone ECM, mechanical strength and cell biocompatibility in a single design and thus, various groups of scaffolds were characterized in terms of mechanical, biocompatibilit...
Tissue engineered cartilage on collagen and PHBV matrices
Kose, GT; Korkusuz, F; Ozkul, A; Soysal, Y; Ozdemir, T; Yildiz, C; Hasırcı, Vasıf Nejat (2005-09-01)
Cartilage engineering is a very novel approach to tissue repair through use of implants. Matrices of collagen containing calcium phosphate (CaP-Gelfix (R)), and matrices of poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) (PHBV) were produced to create a cartilage via tissue engineering. The matrices were characterized by scanning electron microscopy (SEM) and electron diffraction spectroscopy (EDS). Porosity and void volume analysis were carried out to characterize the matrices. Chondrocytes were isola...
Cellulose-based electrospun scaffolds for tissue engineering applications
Atila, Deniz Hazal; Tezcaner, Ayşen; Yazgan Karataş, Ayten; Department of Engineering Sciences (2014)
With the use of a scaffold as support material, adequate number of cells, and bioactive molecules, tissue engineering applications intend to promote the regeneration of tissues or to replace failing or malfunctioning tissues/organs. In this study, electrospun 2D and 3D cellulose-based scaffolds were aimed to be produced with pullulan (PULL). Cellulose acetate (CA) and PULL powders in various ratios (80/20, 50/50, and 80/20) were dissolved in DMAc/DMSO solvent system and electrospun as either 2D or 3D forms....
Surface modified multi-functional PCL/TCP fibrous scaffolds
Malikmammadov, Elbay; Endoğan Tanır, Tuğba; Kızıltay, Aysel; Hasırcı, Nesrin; Hasırcı, Vasıf Nejat (2016-05-17)
Porous and fibrous scaffolds prepared using various methods are essential components of tissue engineering. Poly(ε-caprolactone) (PCL), due to its biocompatibility and mechanical properties, is one of the most desirable polymers in scaffold preparation for bone tissue engineering applications, and there are many studies on modification of PCL to enhance its biocompatibility. In this study, porous and fibrous scaffolds of PCL containing TCP were prepared by wet spinning and gelatin was immobilized onto it to...
3D plotted PCL scaffolds for stem cell based bone tissue engineering
Yilgor, Pinar; Sousa, Rui A.; Reis, Rui L.; Hasırcı, Nesrin; Hasırcı, Vasıf Nejat (2007-10-04)
The ability to control the architecture and strength of a bone tissue engineering scaffold is critical to achieve a harmony between the scaffold and the host tissue. Rapid prototyping (RP) technique is applied to tissue engineering to satisfy this need and to create a scaffold directly from the scanned and digitized image of the defect site. Design and construction of complex structures with different shapes and sizes, at micro and macro scale, with fully interconnected pore structure and appropriate mechan...
Citation Formats
N. Abay, G. Gurel Pekozer, M. Ramazanoglu, and G. T. Kose, “Bone Formation from Porcine Dental Germ Stem Cells on Surface Modified Polybutylene Succinate Scaffolds,” Stem Cells International, pp. 1–16, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/51420.