Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Surface functionalized poly-lactic acid (PLA) scaffolds for bone tissue engineering
Download
index mahsa monirizad.pdf
Date
2022-2
Author
Monirizad, Mahsa
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
436
views
453
downloads
Cite This
The need for more effective tissue grafts for orthopedic applications is one of the main research areas of tissue engineering. In bone tissue engineering (BTE), scaffolds that can mimic bone tissue both from mechanical and biological perspectives are investigated mostly. In this study, it was aimed to develop a BTE scaffold that can mimic bone ECM, mechanical strength and cell biocompatibility in a single design and thus, various groups of scaffolds were characterized in terms of mechanical, biocompatibility, and osteogenic properties. Poly (lactic acid) was used to 3D print main scaffold frame with different internal architectures. Two sets of experiments were designed in this thesis, i) 10 different geometries were chosen according to their porosity and pore structures, alkali treated and coated with type I collagen and bioglass (BG) nanoparticles, to mimic organic and mineral matrix of the bone, ii) 3D scaffolds with 3 different geometries were selected and filled with Collagen, 0.5% BG and cell laden GelMA hydrogel to provide an interconnected cell migration and proliferation network. The 3D printed PLA scaffolds used in the first set of experiments, in general, displayed good biocompatibility, cell adhesion, proliferation, and differentiation. Moreover, the candidate 3D scaffolds in both sets, successfully matched the mechanical properties of the trabecular bone. Voronoi-type scaffolds presented better elastic modulus, yield strength, cell proliferation and migration both in GelMA filled and collagen-coated scaffolds compared to other geometries. The osteogenic characterization of alkali modified Collagen-BG coated scaffolds, showed better results compared to untreated scaffolds.
Subject Keywords
Bone tissue engineering
,
3D printing
,
Scaffold architecture
,
Composite coating
,
Methacrylated gelatin
URI
https://hdl.handle.net/11511/96248
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
3D porous bioceramic based boron-doped hydroxyapatite/baghdadite composite scaffolds for bone tissue engineering
Jodati, Hossein; Evis, Zafer; Tezcaner, Ayşen; Alshemary, Ammar Z.; Motameni, Ali (2023-04-01)
Making composite scaffolds is one of the well-known methods to improve the properties of scaffolds used in bone tissue engineering. In this study, novel ceramic-based 3D porous composite scaffolds were successfully prepared using boron-doped hydroxyapatite, as the primary component, and baghdadite, as the secondary component. The effects of making composites on the properties of boron-doped hydroxyapatite-based scaffolds were investigated in terms of physicochemical, mechanical, and biological properties. T...
Development of manganese-doped hydroxyapatite incorporated PCL electrospun 3D scaffolds coated with gelatin for bone tissue engineering
Samiei, Alaleh; Keskin, Dilek; Evis, Zafer; Department of Biomedical Engineering (2023-1-27)
Combination of polymers and bioceramics has increased their importance in bone tissue engineering (BTE) to treat various defects. Within this frame, in this thesis, it is aimed to develop a 3D gelatin-coated PCL scaffold combined with Mn-doped hydroxyapatite (HA) in order to investigate the effect of the doping element, i.e., the manganese (Mn) ion, on the structural and biological properties of the composite scaffold. Pure and Mn-doped HAs were synthesized using microwave irradiation, and the samples were ...
3D Porous Composite Scaffold of PCL-PEG-PCL/Sr2+ and Mg2+ Ions Co-Doped Borate Hydroxyapatite for Bone Tissue Engineering
Yedekçi, Buşra; Evis, Zafer; Tezcaner, Ayşen; Department of Engineering Sciences (2021-9-6)
Bioceramic/polymer composite systems have gained importance in treating hard tissue damages using bone tissue engineering (BTE). In this context, it was aimed to develop 3D porous composite PCL-PEG-PCL scaffolds containing different amounts of B, Sr and Mg multi-doped hydroxyapatite (HA) that can provide bone regeneration in the bone defect area and to investigate the effect of both the amount of inorganic phase and the porosity on the mechanical and the biological properties. B-Sr-Mg multi-doped HAs were s...
Preparation of Barium doped Baghdadite/PHBV fibrous scaffolds for bone tissue engineering
Sadreddini, Sanaossadat; Evis, Zafer; Keskin, Dilek; Department of Biomedical Engineering (2023-1-23)
Recently, bioceramic/polymer composites have dragged a lot of attention for treating hard tissue damages using bone tissue engineering (BTE). In this context, it was aimed to develop fibrous composite poly(hydroxybutyrate) co (hydroxyvalerate)- polycaprolactone, PHBV-PCL, scaffolds containing different amounts of baghdadite (BAG) and Ba-doped BAG that can provide bone regeneration in the bone defect area and to investigate the effect of these scaffolds on the structural, mechanical, and biological propertie...
3D plotted PCL scaffolds for stem cell based bone tissue engineering
Yilgor, Pinar; Sousa, Rui A.; Reis, Rui L.; Hasırcı, Nesrin; Hasırcı, Vasıf Nejat (2007-10-04)
The ability to control the architecture and strength of a bone tissue engineering scaffold is critical to achieve a harmony between the scaffold and the host tissue. Rapid prototyping (RP) technique is applied to tissue engineering to satisfy this need and to create a scaffold directly from the scanned and digitized image of the defect site. Design and construction of complex structures with different shapes and sizes, at micro and macro scale, with fully interconnected pore structure and appropriate mechan...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Monirizad, “Surface functionalized poly-lactic acid (PLA) scaffolds for bone tissue engineering,” M.S. - Master of Science, Middle East Technical University, 2022.