Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Exploiting evolutionary steering to induce collateral drug sensitivity in cancer
Download
10.1038:s41467-020-15596-z.pdf
Date
2020-4-21
Author
Acar, Ahmet
Nichol, Daniel
Fernandez-Mateos, Javier
Cresswell, George D.
Barozzi, Iros
Hong, Sung Pil
Trahearn, Nicholas
Spiteri, Inmaculada
Stubbs, Mark
Burke, Rosemary
Stewart, Adam
Caravagna, Giulio
Werner, Benjamin
Vlachogiannis, Georgios
Maley, Carlo C.
Magnani, Luca
Valeri, Nicola
Banerji, Udai
Sottoriva, Andrea
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
183
views
174
downloads
Cite This
Drug resistance mediated by clonal evolution is arguably the biggest problem in cancer therapy today. However, evolving resistance to one drug may come at a cost of decreased fecundity or increased sensitivity to another drug. These evolutionary trade-offs can be exploited using 'evolutionary steering' to control the tumour population and delay resistance. However, recapitulating cancer evolutionary dynamics experimentally remains challenging. Here, we present an approach for evolutionary steering based on a combination of single-cell barcoding, large populations of 10(8)-10(9) cells grown without re-plating, longitudinal non-destructive monitoring of cancer clones, and mathematical modelling of tumour evolution. We demonstrate evolutionary steering in a lung cancer model, showing that it shifts the clonal composition of the tumour in our favour, leading to collateral sensitivity and proliferative costs. Genomic profiling revealed some of the mechanisms that drive evolved sensitivity. This approach allows modelling evolutionary steering strategies that can potentially control treatment resistance. Evolutionary steering uses therapies to control tumour evolution by exploiting trade-offs. Here, using a barcoding approach applied to large cell populations, the authors explore evolutionary steering in lung cancer cells treated with EGFR inhibitors.
Subject Keywords
General Biochemistry, Genetics and Molecular Biology
,
General Physics and Astronomy
,
General Chemistry
URI
https://hdl.handle.net/11511/51487
Journal
Nature Communications
DOI
https://doi.org/10.1038/s41467-020-15596-z
Collections
Department of Biology, Article
Suggestions
OpenMETU
Core
Target-specific delivery of doxorubicin to human glioblastoma cell line via ssDNA aptamer
BAYRAÇ, TAHİR; Akca, Oya Ercan; Eyidogan, Fusun Inci; Öktem, Hüseyin Avni (Springer Science and Business Media LLC, 2018-03-01)
Targeted drug delivery approaches have been implementing significant therapeutic gain for cancer treatment since last decades. Aptamers are one of the mostly used and highly selective targeting agents for cancer cells. Herein, we address a nano-sized targeted drug delivery approach adorned with A-172 glioblastoma cell-line-specific single stranded DNA (ssDNA) aptamer in which the chemotherapeutic agent Doxorubicin (DOX) had been conjugated. DNA aptamer, GMT-3, was previously selected for specific recognitio...
Epigenetic Mechanisms Underlying the Dynamic Expression of Cancer-Testis Genes, PAGE2, -2B and SPANX-B, during Mesenchymal-to-Epithelial Transition
Yilmaz-Ozcan, Sinem; Sade, Asli; Kucukkaraduman, Baris; Kaygusuz, Yasemin; Senses, Kerem Mert; Banerjee, Sreeparna; GÜRE, ALİ OSMAY (Public Library of Science (PLoS), 2014-09-17)
Cancer-testis (CT) genes are expressed in various cancers but not in normal tissues other than in cells of the germline. Although DNA demethylation of promoter-proximal CpGs of CT genes is linked to their expression in cancer, the mechanisms leading to demethylation are unknown. To elucidate such mechanisms we chose to study the Caco-2 colorectal cancer cell line during the course of its spontaneous differentiation in vitro, as we found CT genes, in particular PAGE2, -2B and SPANX-B, to be up-regulated duri...
Molecular mechanisms of vincristine and paclitaxel resistance in mcf-7 cell line
Demirel Kars, Meltem; Gündüz, Ufuk; Department of Biotechnology (2008)
Resistance to broad spectrum of chemotherapeutic agents in cancer cell lines and tumors has been called multiple drug resistance (MDR). In this study, the molecular mechanisms of resistance to two anticancer agents (paclitaxel and vincristine) in mammary carcinoma cell line MCF-7 were investigated. MCF-7 cells were selected in the presence of paclitaxel and vincristine by stepwise dose increments. The cell viability and growth profiles of resistant sublines were examined. As the resistance indices increased...
Preparation of polyethylene glycol coated magnetic nanoparticles for targeting of cancer cells
Keskin, Tuğba; Gündüz, Ufuk; Department of Biology (2012)
Conventional cancer chemotherapies cannot differentiate between healthy and cancer cells, and lead to severe side effects and systemic toxicity. In the last decades, different kinds of controlled drug delivery systems have been developed to overcome these shortcomings of chemotherapeutics. Magnetic nanoparticles (MNP) are potentially important in cancer treatment since they can be targeted to tumor site by an externally applied magnetic field. In this study, it is aimed to synthesize folic acid conjugated; ...
Gene expressions of Mn-SOD and GPx-1 in streptozotocin-induced diabetes: effect of antioxidants
Sadi, Goekhan; Güray, Nülüfer Tülün (Springer Science and Business Media LLC, 2009-07-01)
Increased oxidative stress and impaired antioxidant defense mechanisms are believed to be the important factors contributing to the pathogenesis and progression of diabetes mellitus. In this study, we have reported the effects of the streptozotocin-induced diabetes on the gene expression and the activities of two antioxidant enzymes, manganese superoxide dismutase (MnSOD) and glutathione peroxidase (GPx). We also studied the effects of two antioxidants, vitamin C and DL-alpha-lipoic acid (LA), on the system...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Acar et al., “Exploiting evolutionary steering to induce collateral drug sensitivity in cancer,”
Nature Communications
, 2020, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/51487.