Enabling shear textures and fine-grained structures in Magnesium sheet by machining-based deformation processing

2014-07-04
Sagapuram, D.
Efe, Mert
Trumble, K. P.
Chandrasekar, S.
The production of Mg alloy AZ31B sheet in a single deformation step by large-strain extrusion machining (LSEM) is detailed. LSEM imposes intense simple shear in a narrow zone by constrained chip formation. The confined deformation and the associated in situ adiabatic heating are found to be the key factors in production of the Mg sheet without need for external (pre-) heating. A range of shear textures with basal planes inclined to the sheet surface are achieved by this processing. The basal plane inclination could be varied by controlling the strain path. Microstructures, both ultrafine-grained (100-500 nm) and conventional fine-grained (2-5 mu m), have been obtained by controlling the adiabatic heating and the extent of dynamic recrystallization. The LSEM sheet with shear texture and fine grain size shows superior combinations of formability and strength compared to rolled sheet.

Suggestions

Investigating the effects of hardening of aluminium alloys on equal-channel angular pressing-A finite-element study
Karpuz, P.; Simsir, C.; Gür, Cemil Hakan (Elsevier BV, 2009-03-15)
Equal-channel angular pressing (ECAP) is a promising severe plastic deformation method for production of ultrafine-grained bulk metals and alloys with considerably improved mechanical properties. In this study, numerical experiments were carried out to investigate the effect of strain hardening of aluminum alloys on the process performance of ECAP via finite element modeling. In the constitutive model, isothermal-plane strain, frictionless condition was assumed. The numerical results showed that strain hard...
Mechanical properties of nylon parts produced by fused deposition modeling
Hasçelik, Sabit; Öztürk, Ömer T.; Özerinç, Sezer (2021-01-01)
Fused deposition modeling (FDM) is a widely used additive manufacturing technique for producing polymeric parts. While most commonly used FDM filaments are PLA and ABS, nylon is a widely used thermoplastic polymer in industry. This study investigated the mechanical properties of FDM-produced specimens made of nylon and quantified the effect of process parameters such as raster orientation and nozzle temperature on the mechanical properties. As the nozzle temperature increases, specimens become stronger with...
Characterization of Duplex Stainless Steel Weld Metals Obtained by Hybrid Plasma-Gas Metal Arc Welding
Yurtışık, Koray; Tirkeş, Süha; Gür, Cemil Hakan; Gürbüz, Rıza (FapUNIFESP (SciELO), 2013-07-01)
Despite its high efficiency, autogenous keyhole welding is not well-accepted for duplex stainless steels because it causes excessive ferrite in as-welded duplex microstructure, which leads to a degradation in toughness and corrosion properties of the material. Combining the deep penetration characteristics of plasma arc welding in keyhole mode and metal deposition capability of gas metal arc welding, hybrid plasma - gas metal arc welding process has considered for providing a proper duplex microstructure wi...
PRODUCTION AND CHARACTERIZATION OF SIMPLE, FACE-CENTERED AND DIAMOND CUBIC LATTICES BY FUSED DEPOSITION MODELING USING POLYLACTIC ACID
DÖNMEZ, Arif; Evis, Zafer; Department of Engineering Sciences (2022-8-22)
This thesis focuses on the characterization of simple, face-centered and diamond cubic lattices produced by fused deposition modeling (FDM) using polylactic acid (PLA) under uniaxial compression loading condition. Four design parameters were set for each cubic lattice: with radius, without radius, hollow truss, and hollow and with radius. Test items were manufactured for all designed structures. Since changing the manufacturing direction changes the mechanical properties of cubic lattices, the tests were do...
Homogenization of ECAPed Al 2024 alloy through age-hardening
KOTAN, G.; TAN, E.; Kalay, Yunus Eren; Gür, Cemil Hakan (2013-01-01)
Mechanical properties of aluminum alloys can be improved by obtaining ultra-fine grained structures via severe plastic deformation methods such as equal channel angular pressing (ECAP). In practice, however, the final structure may not be as homogeneous as desired. Thus, elimination of the inhomogeneity of ECAPed samples is a challenging task. In the case of age-hardenable alloys, a combination of ECAP and aging might provide new means of obtaining microstructural homogeneity. In this study, the effect of p...
Citation Formats
D. Sagapuram, M. Efe, K. P. Trumble, and S. Chandrasekar, “Enabling shear textures and fine-grained structures in Magnesium sheet by machining-based deformation processing,” 2014, vol. 63, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/51572.