Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Micro- and mesoscale mechanical properties of an ultra-fine grained CrFeMnNi high entropy alloy produced by large strain machining
Date
2020-03-01
Author
Gigax, Jonathan G.
El-Atwani, Osman
McCulloch, Quinn
Aytuna, Berk
Efe, Mert
Fensin, Saryu
Maloy, Stuart A.
Li, Nan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
146
views
0
downloads
Cite This
Large strain machining (LSM), an attractive severe deformation technique due to its simplicity, has been previously used to produce a fine-grained structure in a variety of alloys. An equiatomic CrFeMnNi high entropy alloy was subject to various LSM conditions. The microstructure was observed to have ultra-fine grains in all conditions, with some more homogeneous than others. Nanoindentation showed a considerable increase in hardness for all LSM conditions with respect to the base material. Mesoscale tensile testing revealed that, while the tensile strength of the LSM specimens was higher than that of the base material, the ductility was reduced significantly. (C) 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Subject Keywords
General Materials Science
,
Condensed Matter Physics
URI
https://hdl.handle.net/11511/51890
Journal
SCRIPTA MATERIALIA
DOI
https://doi.org/10.1016/j.scriptamat.2019.11.042
Collections
Department of Metallurgical and Materials Engineering, Article
Suggestions
OpenMETU
Core
Weight function method for transient thermomechanical fracture analysis of a functionally graded hollow cylinder possessing a circumferential crack
Eshraghi, Iman; Soltani, Nasser; Dağ, Serkan (Informa UK Limited, 2016-01-01)
This article introduces a weight function method for fracture analysis of a circumferentially cracked functionally graded hollow cylinder subjected to transient thermomechanical loading. Analytical solutions for transient temperature and stress distributions in the uncracked cylinder are derived by applying finite Hankel transformation. These solutions are utilized to determine stress acting on the faces of the circumferential crack in the local perturbation problem. Thermomechanical material properties are...
Circumferentially cracked bimaterial hollow cylinder under mechanical and transient thermal loading
Kadıoğlu, Fevzi Suat (Informa UK Limited, 2006-12-01)
The analytical solution for the problem of a circumferential inner surface crack in an elastic, infinitely long composite hollow cylinder, made of two concentric perfectly bonded transversely isotropic cylinders is considered. Uniform axial loading and thermal loading in the form of a sudden cooling on the inner boundary are considered. Out of 10 material parameters involved, two bimaterial parameters and three material parameters for each layer upon which the stress intensity factor depends under uniform l...
Stress distributions in cooling fins of variable thickness with and without rotation
Eraslan, Ahmet Nedim (Informa UK Limited, 2005-08-01)
A computational model is developed to predict elastic and elastic-plastic stress distribution in a nonlinearly hardening cooling fin of variable thickness subject to centrifugal force. The model is based on a realistic conduction-convection mechanism, von Mises yield criterion, Henky's deformation theory and a Swift-type strain hardening law. Temperature dependency of modulus of elasticity, uniaxial yield limit, coefficient of thermal expansion, and thermal conductivity of the fin material is taken into acc...
Surfactant-modified multiscale composites for improved tensile fatigue and impact damage sensing
Yesil, Sertan; Winkelrnann, Charles; Bayram, Göknur; La Saponara, Valeria (Elsevier BV, 2010-10-25)
This paper documents the mechanical and electrical performance of self-sensing conductive polymer composites prepared with a low-cost technique and small hardware, able to considerably improve the dispersion and the surface adhesion of multi-walled carbon nanotubes (CNTs) in epoxy resin with respect to amine-modified CNTs and as-received CNTs. Surface treatment of the CNTs is performed using hexamethylene diamine, or a mix of sulfuric and nitric acid, and one of two surfactants (for the diamine treatment on...
Microstructural and texture evolution during thermo-hydrogen processing of Ti6Al4V alloys produced by electron beam melting
Dogu, Merve Nur; ESEN, ZİYA; Davut, Kemal; Tan, Evren; Gumus, Berkay; Dericioğlu, Arcan Fehmi (Elsevier BV, 2020-10-01)
The present study was conducted to reveal the effects of building angles and post heat-treatments (2-step Thermo-Hydrogen Processing (THP) and conventional annealing treatment) on the density, microstructure and texture of Ti6Al4V alloy parts produced by Electron Beam Melting (EBM). The results showed that regardless of the building angle; the density, microstructure and crystallographic texture (defined with respect to building angle) of the as-produced samples were identical; having Widmanstatten a struct...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
J. G. Gigax et al., “Micro- and mesoscale mechanical properties of an ultra-fine grained CrFeMnNi high entropy alloy produced by large strain machining,”
SCRIPTA MATERIALIA
, pp. 508–512, 2020, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/51890.