Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
A Study of Prosthetic Heart Valve Sounds
Date
1987-11
Author
Koymen, Hayrettin
Altay, Bulent K.
Ider, Yusuf Ziya
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
14
views
0
downloads
In this paper a new mechanism is proposed for the generation of phonocardiogram (PCG) sounds from implanted mechanical prosthetic heart valves. The structures in the chest, the heart, its partitions, and major vessels, constitute a frequency selective system excited by the rapidly decelerating valve occluder. It is shown that the source, the rapidly decelerating valve, has a wide and flat power spectrum and hence is an impulsive excitation that couples energy to the resonance modes specified by the structures in the chest. Consequently, the PCG signal is composed of decaying sinusoids. The parameters of the decaying sinusoids are estimated, and it is observed that the power spectra of the PCG signals have two dominant peaks in the frequency band of 200-500 Hz. The energy coupled to these two modes depends on the state of the valve. With thrombus the decelerating occluder slows down and becomes a broader pulse concentrating the energy to the lower resonance mode. This is verified by experiments on 30 patients during postoperative time course. However, no significant change in the resonance frequencies are observed which is an evidence for their anatomical and not valvular dependence.
Subject Keywords
Biomedical Engineering
,
Biomedical
URI
https://hdl.handle.net/11511/51913
Journal
IEEE Transactions on Biomedical Engineering
DOI
https://doi.org/10.1109/tbme.1987.326006
Collections
Department of Electrical and Electronics Engineering, Article