Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
An integral equation approach to the computation of nonlinear fields in electrical machines
Date
1988-7
Author
Kükrer, Osman
Ertan, H. Bülnet
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
3
views
0
downloads
A numerical method based on an integral equation formulation, for the computation of nonlinear magnetostatic field, in two dimensions in cylindrical polar coordinates is given. The correctness of the method is illustrated by solving two linear two-dimensional magnetic field problems which have readily available analytical solutions. The dependence of the accuracy of the solution on the number and distribution of the meshes is studied on these examples. The method is then applied to the computation of the nonlinear field of a small salient pole synchronous machine. The technique used to accelerate the solution and other aspects of the solution are discussed. The program is used for the computation of magnetization characteristics, zero-power-factor characteristics, terminal voltages and their harmonics, and the field distribution in the air gap. Computed characteristics are compared with measurements. The results obtained illustrate that accurate and reasonably quick results are obtainable using this method
Subject Keywords
Integral equations
,
Magnetostatics
,
Magnetic fields
,
Magnetic analysis
,
Synchronous machines
,
Acceleration
,
Distributed computing
,
Magnetization
,
Voltage
,
Magnetic field measurement
URI
https://hdl.handle.net/11511/51915
Journal
IEEE Transactions on Magnetics
DOI
https://doi.org/10.1109/20.3414
Collections
Department of Electrical and Electronics Engineering, Article