Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
The geometry of self-dual two-forms
Download
index.pdf
Date
1997-09-01
Author
Bilge, AH
Dereli, T
Kocak, S
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
202
views
0
downloads
Cite This
We show that self-dual two-forms in 2n-dimensional spaces determine a n(2)-n+1-dimensional manifold S-2n and the dimension of the maximal linear subspaces of S-2n is equal To the (Radon-Hurwitz) number of linearly independent vector fields on the sphere S2n-1. We provide a direct proof that for n odd S-2n has only one-dimensional linear submanifolds. We exhibit 2(c)-1-dimensional subspaces in dimensions which are multiples of 2(c), for c=1,2,3. In particular, we demonstrate that the seven-dimensional linear subspaces of S-8 also include among many other interesting classes of self-dual two-forms, the self-dual two-forms of Corrigan, Devchand, Fairlie, and Nuyts [Nucl. Phys. B 214, 452 (1983)] and a representation of Cl-7 given by octonionic multiplication. We discuss the relation of the Linear subspaces with the representations of Clifford algebras. (C) 1997 American Institute of Physics.
Subject Keywords
Last hopf map
,
8 dimensions
,
Field-equations
,
Gauge-fields
URI
https://hdl.handle.net/11511/67144
Journal
JOURNAL OF MATHEMATICAL PHYSICS
DOI
https://doi.org/10.1063/1.532125
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
An integral equation approach to the computation of nonlinear fields in electrical machines
Kükrer, Osman; Ertan, H. Bülnet (Institute of Electrical and Electronics Engineers (IEEE), 1988-7)
A numerical method based on an integral equation formulation, for the computation of nonlinear magnetostatic field, in two dimensions in cylindrical polar coordinates is given. The correctness of the method is illustrated by solving two linear two-dimensional magnetic field problems which have readily available analytical solutions. The dependence of the accuracy of the solution on the number and distribution of the meshes is studied on these examples. The method is then applied to the computation of the no...
A local discontinuous Galerkin method for Dirichlet boundary control problems
Yücel, Hamdullah (null; 2018-10-20)
In this paper, we consider Dirichlet boundary control of a convection-diffusion equation with L 2 4 – 5 boundary controls subject to pointwise bounds on the control posed on a two dimensional convex polygonal domain. 6 We use the local discontinuous Galerkin method as a discretization method. We derive a priori error estimates for 7 the approximation of the Dirichlet boundary control problem on a polygonal domain. Several numerical results are 8 provided to illustrate the theoretical results.
The path integral quantization and the construction of the S-matrix operator in the Abelian and non-Abelian Chern-Simons theories
Fainberg, VY; Pak, Namık Kemal; Shikakhwa, MS (IOP Publishing, 1997-06-07)
The covariant path integral quantization of the theory of the scalar and spinor fields interacting through the Abelian and non-Abelian Chern-Simons gauge fields in 2 + 1 dimensions is carried out using the De Witt-Fadeev-Popov method. The mathematical ill-definiteness of the path integral of theories with pure Chern-Simons' fields is remedied by the introduction of the Maxwell or Maxwell-type (in the non-Abelian case) terms, which make the resulting theories super-renormalizable and guarantees their gauge-i...
The Sturm-Liouville operator on the space of functions with discontinuity conditions
Uğur, Ömür (2006-03-01)
The Sturm-Liouville differential operators defined on the space of discontinuous functions, where the moments of discontinuity of the functions are interior points of the interval and the discontinuity conditions are linear have been studied. Auxiliary results concerning the Green's formula, boundary value, and eigenvalue problems for impulsive differential equations are emphasized.
The finite element method over a simple stabilizing grid applied to fluid flow problems
Aydın, Selçuk Han; Tezer-Sezgin, Münevver; Department of Scientific Computing (2008)
We consider the stabilized finite element method for solving the incompressible Navier-Stokes equations and the magnetohydrodynamic (MHD) equations in two dimensions. The well-known instabilities arising from the application of standard Galerkin finite element method are eliminated by using the stabilizing subgrid method (SSM), the streamline upwind Petrov-Galerkin (SUPG) method, and the two-level finite element method (TLFEM). The domain is discretized into a set of regular triangular elements. In SSM, the...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Bilge, T. Dereli, and S. Kocak, “The geometry of self-dual two-forms,”
JOURNAL OF MATHEMATICAL PHYSICS
, pp. 4804–4814, 1997, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/67144.