An Application of the rayleigh-ritz method to the integral-equation representation of the one-dimensional schrödinger equation

Download
2019
Kaya, Ruşen
In this thesis, the theory of the relations between differential and integral equations is analyzed and is illustrated by the reformulation of the one-dimensional Schrödinger equation in terms of an integral equation employing the Green’s function. The Rayleigh- Ritz method is applied to the integral-equation formulation of the one-dimensional Schrödinger equation in order to approximate the eigenvalues of the corresponding singular problem within the desired accuracy. The outcomes are compared with those resulting from the methods applied to the original formulation of the problem. Consecutive symmetries are observed throughout the symmetric structure of the problem, the symmetric Green’s function, the symmetric potentials used in the method and the symmetric matrices obtained eventually.

Suggestions

A Rayleigh–Ritz Method for Numerical Solutions of Linear Fredholm Integral Equations of the Second Kind
Kaya, Ruşen; Taşeli, Hasan (2022-01-01)
A Rayleigh–Ritz Method is suggested for solving linear Fredholm integral equations of the second kind numerically in a desired accuracy. To test the performance of the present approach, the classical one-dimensional Schrödinger equation -y″(x)+v(x)y(x)=λy(x),x∈(-∞,∞) has been converted into an integral equation. For a regular problem, the unbounded interval is truncated to x∈ [ - ℓ, ℓ] , where ℓ is regarded as a boundary parameter. Then, the resulting integral equation has been solved and the results are co...
On the accuracy of MFIE and CFIE in the solution of large electromagnetic scattering problems
Ergül, Özgür Salih (null; 2006-11-10)
We present the linear-linear (LL) basis functions to improve the accuracy of the magnetic-field integral equation (MFIE) and the combined-field integral equation (CFIE) for three-dimensional electromagnetic scattering problems involving large scatterers. MFIE and CFIE with the conventional Rao-Wilton-Glisson (RWG) basis functions are significantly inaccurate even for large and smooth geometries, such as a sphere, compared to the solutions by the electric-field integral equation (EFIE). By using the LL funct...
On the consistency of the solutions of the space fractional Schrodinger equation
Bayin, Selcuk S. (2012-04-01)
Recently, it was pointed out that the solutions found in the literature for the space fractional Schrodinger equation in a piecewise manner are wrong, except the case with the delta potential. We re-analyze this problem and show that an exact and a proper treatment of the relevant integral prove otherwise. We also discuss effective potential approach and present a free particle solution for the space and time fractional Schrodinger equation in general coordinates in terms of Fox's H-functions. (C) 2012 Amer...
An integral equation approach to the computation of nonlinear fields in electrical machines
Kükrer, Osman; Ertan, H. Bülnet (Institute of Electrical and Electronics Engineers (IEEE), 1988-7)
A numerical method based on an integral equation formulation, for the computation of nonlinear magnetostatic field, in two dimensions in cylindrical polar coordinates is given. The correctness of the method is illustrated by solving two linear two-dimensional magnetic field problems which have readily available analytical solutions. The dependence of the accuracy of the solution on the number and distribution of the meshes is studied on these examples. The method is then applied to the computation of the no...
An eigenfunction expansion for the Schrodinger equation with arbitrary non-central potentials
Taşeli, Hasan; Uğur, Ömür (2002-11-01)
An eigenfunction expansion for the Schrodinger equation for a particle moving in an arbitrary non-central potential in the cylindrical polar coordinates is introduced, which reduces the partial differential equation to a system of coupled differential equations in the radial variable r. It is proved that such an orthogonal expansion of the wavefunction into the complete set of Chebyshev polynomials is uniformly convergent on any domain of (r, theta). As a benchmark application, the bound states calculations...
Citation Formats
R. Kaya, “An Application of the rayleigh-ritz method to the integral-equation representation of the one-dimensional schrödinger equation,” Thesis (M.S.) -- Graduate School of Applied Mathematics. Mathematics., Middle East Technical University, 2019.