Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
The effect of a stiffener on a cracked plate under skew-symmetric loading
Date
1988-1
Author
Yahşi, O.S.
Karakurt, Ali Osman
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
154
views
0
downloads
Cite This
In this paper, the title problem is studied by using Reissner's transverse shear theory. The main purpose of the paper is to investigate the effect of a stiffener on the stress intensity factors in plates under twisting moments and/or transverse shear loads. The asymptotic stress state near the crack tip terminating at the stiffener is examined, and normalized Mode II and Mode III stress intensity factors are tabulated for various crack geometries. The results also include the effect of Poisson's ratio, stiffness constants and material orthotropy for specially orthotropic materials on the stress intensity factors.
Subject Keywords
Mechanical Engineering
,
General Materials Science
,
Mechanics of Materials
,
Multidisciplinary; Engineering
URI
https://hdl.handle.net/11511/52022
Journal
International Journal of Pressure Vessels and Piping
DOI
https://doi.org/10.1016/0308-0161(88)90122-6
Collections
Department of Mechanical Engineering, Article
Suggestions
OpenMETU
Core
A surface crack in a graded coating subjected to sliding frictional contact
Dağ, Serkan; GÜLER, MEHMET ALİ; Gulgec, Mufit (Elsevier BV, 2012-01-01)
This article presents an analytical method developed to conduct fracture analysis of functionally graded coatings that are under the effect of contact stresses. The geometric model considered comprises a functionally graded coating, which possesses a surface crack and is perfectly bonded to a homogeneous half-plane. A two-step solution procedure is put forward in which the contact and crack problems are treated separately. First, the graded coating is assumed to be in sliding frictional contact with a rigid...
Finite anti-plane shear of compressible hyperelastic tubes
Erarslanoğlu, G.; Ertepınar, A. (Elsevier BV, 1990-1)
Finite, anti-plane shear of a long, hyperelastic, compressible circular cylindrical tube is investigated using the theory of finite elasticity. The highly nonlinear, coupled, ordinary differential equations with variable coefficients governing the problem are solved numerically using the method of adjoints. The effect of the compressibility of the material is studied in several numerical examples.
Prediction of forming limit curve at fracture for sheet metal using new ductile fracture criterion
Dizaji, Shahram Abbasnejad; Darendeliler, Haluk; KAFTANOĞLU, BİLGİN (Elsevier BV, 2018-05-01)
The application of ductile fracture criteria (DFCs) in numerical analysis of sheet metal forming processes can lead to the accurate determination of the fracture initiation. In this study, a new uncoupled ductile fracture criterion (DFC) has been developed which considers the effects of material parameters on the forming limit curves (FLCs) and can be easily implemented in the finite element codes. Two different constitutive models have been employed with the new DFC in order to evaluate the results obtaine...
Plane strain analytical solutions for a functionally graded elastic-plastic pressurized tube
Eraslan, Ahmet Nedim (Elsevier BV, 2006-09-01)
Plane strain analytical solutions to functionally graded elastic and elastic-plastic pressurized tube problems are obtained in the framework of small deformation theory. The modulus of elasticity and the uniaxial yield limit of the tube material are assumed to vary radially according to two parametric parabolic forms. The analytical plastic model is based on Tresca's yield criterion, its associated flow rule and ideally plastic material behaviour. Elastic, partially plastic and fully plastic stress states a...
Interactions at fiber/matrix interface in short fiber reinforced amorphous thermoplastic composites modified with micro- and nano-fillers
Isitman, Nihat Ali; Aykol, Muratahan; Kaynak, Cevdet (Springer Science and Business Media LLC, 2012-01-01)
This study aims at systematically extracting fiber/matrix interfacial strength in short-glass fiber-reinforced polymer composites using an experimental micromechanics approach which employs mechanical properties and residual fiber length distributions to derive the apparent interfacial shear strength. We started from neat high-impact polystyrene matrix short-glass fiber-reinforced composites (HIPS/GF) with varying fiber loading and proceeded toward HIPS/GF hybrid composites containing micro- and nano-filler...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
O. S. Yahşi and A. O. Karakurt, “The effect of a stiffener on a cracked plate under skew-symmetric loading,”
International Journal of Pressure Vessels and Piping
, pp. 385–403, 1988, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/52022.