Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Transient wave propagation in a viscoelastic layered composite—An approximate theory
Date
1987-2
Author
Birlik, Gülin A.
Mengi, Yalçın
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
199
views
0
downloads
Cite This
The approximate theory proposed in reference [1] for viscoelastic layered composites is appraised by applying it to a transient wave propagation problem. The problem involves a viscoelastic slab subjected at one end to a dynamic pressure which has either step or trapezoidal variation in time while its other end is kept fixed. The faces of the slab are parallel to the layering. For the case in which the composite material is elastic, which can be obtained from viscoelastic case when viscous terms vanish, the wave profiles for normal stress and particle velocity are determined by using exact and approximate theories, and they are compared. It is found that even the lowest order approximate theory is capable of predicting the essential dynamic characteristics of the layered composite correctly. Further, the influence of the viscosity on wave profiles is studied by using the approximate theory. For the time integration of the approximate equations a numerical algorithm based on FFT is employed.
Subject Keywords
Mechanical Engineering
,
Acoustics and Ultrasonics
,
Mechanics of Materials
,
Condensed Matter Physics
,
Acoustics
,
Mechanics
URI
https://hdl.handle.net/11511/52167
Journal
Journal of Sound and Vibration
DOI
https://doi.org/10.1016/s0022-460x(87)81347-0
Collections
Department of Engineering Sciences, Article
Suggestions
OpenMETU
Core
TRANSIENT WAVE-PROPAGATION IN LAYERED MEDIA CONDUCTING HEAT
TURHAN, D; CELEP, Z; ZAINEDDEN, IK (Elsevier BV, 1991-01-22)
Transient wave propagation in thermoelastic layered composites consisting of alternating isotropic, homogeneous and linearly elastic high-strength reinforcing and low-strength matrix layers is investigated. The layers of the composite medium can be plane, cylindrical or spherical. The inner surfaces of the composite bodies are subjected to uniform time dependent dynamic inputs. A common formulation is employed for the three types of layered media. The generalized theory of thermoelasticity is used, with the...
THE HARMONIC RESPONSE OF UNIFORM BEAMS ON MULTIPLE LINEAR SUPPORTS - A FLEXURAL WAVE ANALYSIS
MEAD, DJ; Yaman, Yavuz (Elsevier BV, 1990-09-22)
A wave approach is developed for the exact analysis of the harmonic response of uniform finite beams on multiple supports. The beam may be excited by single or multi-point harmonic forces or moments; its supports may have general linear characteristics which may include displacement-rotation coupling. Use is made of the harmonic response function for an infinite beam subjected to a single-point harmonic force or moment. The unknowns of the finite beam problem are the support reaction forces/moments and the ...
Two-dimensional transient wave propagation in viscoelastic layered media
Abu Alshaikh, I; Turhan, D; Mengi, Y (Elsevier BV, 2001-07-26)
Propagation of two-dimensional transient waves in multilayered viscoelastic media is investigated. The multilayered medium consists of N different isotropic, homogeneous and linearly viscoelastic layers with more than one discrete relaxation time. The top surface of the layered medium is subjected to dynamic in-plane surface tractions; whereas, the lower surface is free or fixed. A numerical technique which combines the Fourier transform with the method of characteristics is employed to obtain the solutions...
A refined dynamic theory for viscoelastic cylindrical shells and cylindrical laminated composites, Part 2: An application
Birlik, G.A.; Mengi, Yalçın (Elsevier BV, 1989-4)
In this study, the general approximate theory developed in Part 1 for shells is assessed for axially symmetric elastic waves propagating in a closed circular cylindrical shell (hollow rod). The spectra predicted by zeroth and second order approximate theories are determined for various values of shell thicknesses and the Poisson ratios and they are compared with those of exact theory. It is found that the agreement between the two is good. Approximate and exact cut-off frequencies match almost exactly. The ...
A METHOD FOR THE CALCULATION OF NATURAL FREQUENCIES OF ORTHOTROPIC AXISYMMETRICALLY LOADED SHELLS OF REVOLUTION
Kayran, Altan; ARDIC, ES (ASME International, 1994-01-01)
A methodology is presented for the calculation of the natural frequencies of orthotropic axisymmetrically loaded shells of revolution including the effect of transverse shear deformation. The fundamental system of equations governing the free vibration of the stress-free shells of revolution are modified such that the initial stresses due to the axisymmetric loading are incorporated into the analysis. The linear equations on the vibration about the deformed state are solved by using the transfer matrix meth...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
G. A. Birlik and Y. Mengi, “Transient wave propagation in a viscoelastic layered composite—An approximate theory,”
Journal of Sound and Vibration
, pp. 141–153, 1987, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/52167.