Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Calculation of Magnetization and Magnetic Susceptibility Close to Magnetic Phase Transitions in (CH3)2NH2FeIIINiII(HCOO)6 and (CH3)2NH2FeIIICuII(HCOO)6
Date
2020-01-01
Author
Yurtseven, Hasan Hamit
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
209
views
0
downloads
Cite This
We study the temperature and magnetic field dependence of the magnetization (M) and the inverse susceptibility (chi(-1)) in the metal-organic frameworks, in particular, for (CH3)(2)(NH2FeNiII)-Ni-III(HCOO)(6) (DMFeNi) and (CH3)(2)(NH2FeCuII)-Cu-III(HCOO)(6) (DMFeCu) close to their magnetic phase transitions. The Landau phenomenological model is employed to analyze the experimental data for the M(T, H) from the literature and to calculate chi(-1)(T, H) of DMFeNi and DMFeCu. Our results indicate that the thermodynamic model studied explains adequately the observed behavior of M(T, H) for DMFeNi and DMFeCu, which exhibit a weakly first-order (or nearly second order) magnetic phase transition.
Subject Keywords
General Materials Science
,
Atomic and Molecular Physics, and Optics
,
Condensed Matter Physics
URI
https://hdl.handle.net/11511/52222
Journal
Journal of Low Temperature Physics
DOI
https://doi.org/10.1007/s10909-020-02530-2
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
Solution of the Dirac equation for pseudoharmonic potential by using the Nikiforov-Uvarov method
Aydogdu, Oktay; Sever, Ramazan (IOP Publishing, 2009-07-01)
We investigate the energy spectra and corresponding wave functions of the Dirac equation for pseudoharmonic potential with spin and pseudospin symmetry. To obtain an analytical solution of the Dirac equation, we consider the Nikiforov-Uvarov method in the calculations. For any spin-orbit coupling term kappa, we find the closed forms of the energy eigenvalues and also obtain the radial wave functions in the spin and pseudospin symmetry limits.
Morphological evolution of intragranular void under the thermal-stress gradient generated by the steady state heat flow in encapsulated metallic films: Special reference to flip chip solder joints
Ogurtani, Tarik Omer; Akyildiz, Oncu (2007-11-30)
The morphological evolution of intragranular voids induced by the surface drift-diffusion under the action of capillary forces, electromigration (EM) forces, and thermal stress gradients (TSG) associated with steady state heat flow is investigated in passivated metallic thin films via computer simulation using the front-tracking method. As far as the device reliability is concerned, the most critical configuration for interconnect failure occurs even when thermal stresses are low if the normalized ratio of ...
Ground-state properties and collective excitations in a 2D Bose-Einstein condensate with gravity-like interatomic attraction
Keleş, Ahmet; Tanatar, B. (Springer Science and Business Media LLC, 2008-02-01)
We study the ground-state properties of a Bose-Einstein condensate (BEC) with the short-range repulsion and gravitylike 1/r interatomic attraction in two-dimensions (2D). Using the variational approach, we obtain the ground-state energy and show that the condensate is stable for all interaction strenghts in 2D. We also determine the collective excitations at zero temperature using the time-dependent variational method. We analyze the properties of the Thomas-Fermi-gravity (TF-G) and gravity (G) regimes.
Interactive computer simulation of dislocation damping spectra associated with the coupled motion of geometric kinks and point defects subjected to the bulk segregation phenomenon
Ogurtani, TO; Gungor, MR; Oren, EE (Trans Tech Publications, Ltd.; 2003-01-01)
The set of non-linear differential equations which describes the kink chain oscillating in an atmosphere of continuously distributed paraelastic (interstitials) or isotropic defects and, in addition, decorated by a dragging point defect at the midpoint, is solved numerically after introducing a novel scaling and re-normalization procedure. The internal friction coefficient obtained indicates the existence of two separate peaks, the decoration peak and the parent peak, which are directly related to the selec...
Study on the long wavelength SiGe/Si heterojunction internal photoemission infrared photodetectors
Aslan, B; Turan, Raşit; Liu, HC (Elsevier BV, 2005-10-01)
The theory of internal photoemission in semiconductor heterojunctions has been investigated and the existing model has been extended by incorporating the effect of different effective masses in the active region and the substrate, nonspherical-nonparabolic bands, and the energy loss per collision. Photoresponse measurements on Si1-xGex/Si heterojunction internal photoemission (HIP) infrared photodetectors (IP) have shown that they are fit well by the theory. Qualitative model describing the mechanisms of ph...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. H. Yurtseven, “Calculation of Magnetization and Magnetic Susceptibility Close to Magnetic Phase Transitions in (CH3)2NH2FeIIINiII(HCOO)6 and (CH3)2NH2FeIIICuII(HCOO)6,”
Journal of Low Temperature Physics
, pp. 0–0, 2020, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/52222.