Decoupled Cascaded PID Control of an Aerial Manipulation System

2019-12-01
Bulut, Nebi
Turgut, Ali Emre
Arıkan, Kutluk Bilge
This paper presents the control of an aerial manipulation system with a quadrotor and a 2-DOF robotic arm. Firstly, the kinematic model of the combined system and the Denavit-Hartenberg parameters of the serial robotic arm are obtained. Then, to derive the dynamics of the system, the quadrotor and the 2-DOF robotic arm are modeled as a combined system. The Lagrange-d'Alembert formulation is used to obtain the equation of motion of the combined system. Later, decoupled controllers are developed for the general-ized coordinates. Decoupled cascaded PID controllers are designed for trajectory tracking of the combined system. Proposed control algorithms are implemented in the MATLAB/Simulink environment and tested using the highly nonlinear system model in simulation. The robustness of the controllers is checked by applying disturbance forces from different directions at the tip point of the 2-DOF robotic arm. The proposed control algorithms performed satisfactorily and showed very low absolute errors
Hittite Journal of Science and Engineering

Suggestions

Computed Torque Control of an Aerial Manipulation System with a Quadrotor and a 2-DOF Robotic Arm
Bulut, Nebi; Turgut, Ali; Aríkan, Kutluk (SCITEPRESS, AV D MANUELL, 27A 2 ESQ, SETUBAL, 2910-595, PORTUGAL; 2019)
This paper presents the control of an aerial manipulation system with a quadrotor and a 2-DOF robotic arm by using the computed torque control method. The kinematic and dynamic model of the system is obtained by modeling the quadrotor and the robotic arm as a unified system. Then, the equation of motion of the unified system is got in the form of a standard robot dynamics equation. For the trajectory control of the system, computed torque control is used. Gains of the controller are optimized by using nonli...
Modeling, simulation, and control of a quadrotor having a 2-dof robotic arm
Bulut, Neb; Turgut, Ali Emre; Department of Mechanical Engineering (2019)
In this thesis, modeling, simulation, and control of a combined system that consists of a quadrotor and a 2-DOF robotic serial manipulator are presented. Firstly, the kinematic and dynamic model of the combined system are obtained. Then, the equation of motion of the combined system is derived by using Lagrange-D’Alembert formulation. Based on these equations, control algorithms are developed to control the combined system. Firstly, the cascaded PID controllers are designed by using the linearized decoupled...
Locomotion Gait Optimization For Modular Robots; Coevolving Morphology and Control
Pouya, Soha; Aydın Göl, Ebru; Moeckel, Rico; Ijspeert, Auke Jan (2011-01-01)
This study aims at providing a control-learning framework capable of generating optimal locomotion patterns for the modular robots. The key ideas are firstly to provide a generic control structure that can be well-adapted for the different morphologies and secondly to exploit and coevolve both morphology and control aspects. A generic framework combining robot morphology, control and environment and on the top of them optimization and evolutionary algorithms are presented. The details of the components and ...
Intelligent gait control of a multilegged robot used in rescue operations
Karalarlı, Emre; Erkmen, Aydan Müşerref; Erkmen, İsmet; Department of Electrical and Electronics Engineering (2003)
In this thesis work an intelligent controller based on a gait synthesizer for a hexapod robot used in rescue operations is developed. The gait synthesizer draws decisions from insect-inspired gait patterns to the changing needs of the terrain and that of rescue. It is composed of three modules responsible for selecting a new gait, evaluating the current gait, and modifying the recommended gait according to the internal reinforcements of past time steps. A Fuzzy Logic Controller is implemented in selecting t...
Efficiency-aware and energy-aware data collection via a UAV with limited-capacity battery in robotic wireless sensor networks
Gül, Ömer Melih; Erkmen, Aydan Müşerref; Department of Electrical and Electronics Engineering (2020-12-17)
This thesis investigates efficiency-aware and energy-aware data-collection problems by an unmanned aerial vehicle (UAV) with limited-capacity battery, in a clustered robot network. In each cluster, a cluster head (CH) robot allocates tasks to remaining robots and collects data from them. Firstly, we consider this problem by focusing on minimizing energy consumption of UAV coupled to minimum cost data collection from CH robots by visiting optimal portion of CH robots. UAV decides the CH robots to visit by co...
Citation Formats
N. Bulut, A. E. Turgut, and K. B. Arıkan, “Decoupled Cascaded PID Control of an Aerial Manipulation System,” Hittite Journal of Science and Engineering, pp. 251–259, 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/52229.