MODELING OF TWO-DIMENSIONAL SOLIDIFICATION OF A FINITE CYLINDER

2016-01-01
ODABAŞI, Gülnihal
Dursunkaya, Zafer
Two-dimensional solidification problem of a finite cylinder, in which the liquid phase is initially at the fusion temperature, is solved by using a front fixing approach. The external surfaces of the cylinder are subjected to a temporally or spatially varying temperature below freezing. The method employed is based on one used for the solution of a solidification problem in Cartesian domain. A coordinate transformation is applied in both radial and axial directions to obtain a square computational domain. This transformation results in a computationally intensive grid generation for every time step of solution. Finite difference form of the transformed energy equation is solved for the temperature distribution in the solid phase and the solid-liquid interface energy balance is integrated for the new position of the moving solidification front. The effect of the aspect ratio and spatially varying boundary temperatures on solidification is studied.
ISI BILIMI VE TEKNIGI DERGISI-JOURNAL OF THERMAL SCIENCE AND TECHNOLOGY

Suggestions

Calculation of the P-T phase diagram of nitrogen using a mean field model
Enginer, Y.; Algul, G.; Yurtseven, Hasan Hamit (2017-12-20)
The P-T phase diagram is calculated at low and moderate pressures by obtaining the phase line equations for the transitions considered in nitrogen using the Landau phenomenological model. For some transitions, a quadratic coupling between the order parameters is taken into account in the expansion of free energies in terms of the order parameters. A quadratic function in T and P is fitted to the experimental P-T data from the literature and the fitted parameters are determined.
Calculation of the Spontaneous Polarization and the Dielectric Constant as a Function of Temperature for KH2PO4
Yurtseven, Hasan Hamit (2012-01-01)
The temperature dependence of the spontaneous polarization P is calculated in the ferroelectric phase (T < T-C) of KH2PO4 (KDP) at atmospheric pressure (T-C = 122 K). Also, the dielectric constant e is calculated at various temperatures in the paraelectric phase (T > T-C) of KDP at atmospheric pressure. For this calculation of P and epsilon, by fitting the observed Raman frequencies of the soft mode, the microscopic parameters of the pure tunnelling model are obtained. In this model, the proton-lattice inte...
Calculation of the thermodynamic functions using a mean field model for the fluid-solid transition in nitrogen
AKAY, Özge; Yurtseven, Hasan Hamit (Romanian Academy - Revue Roumaine De Chimie, 2020-05-01)
Temperature and pressure dependence of the thermodynamic quantities are calculated using the Landau phenomenological model for the first order fluid-solid transition in nitrogen. This calculation is performed by fitting the phase line equation as derived from the mean field model to the observed T-P phase diagram of the fluid-solid transition in N2 from the literature. Our calculations show that the order parameter and the inverse susceptibility decrease whereas the entropy, heat capacity, thermal expansion...
Analytical solution of thermally developing microtube heat transfer including axial conduction, viscous dissipation, and rarefaction effects
Barışık, Murat; Yazıcıoğlu, Almıla Güvenç; Çetin, Barbaros; Kakaç, Sadık (Elsevier BV, 2015-10)
The solution of extended Graetz problem for micro-scale gas flows is performed by coupling of rarefaction, axial conduction and viscous dissipation at slip flow regime. The analytical coupling achieved by using Gram-Schmidt orthogonalization technique provides interrelated appearance of corresponding effects through the variation of non-dimensional numbers. The developing temperature field is determined by solving the energy equation locally together with the fully developed flow profile. Analytical solutio...
Calculation of a phase diagram for the ice II-V-VItransitions
Tari, O; Yurtseven, Hasan Hamit; Salihoglu, S (2000-12-01)
In this study we calculate the P - T phase diagram of ice II - V - VI using a mean field model. Our calculated phase line equations are fitted to the experimental data from the literature. There is a very good agreement between our calculated and experimentally observed P - T phase diagram of ice II - V - VI.
Citation Formats
G. ODABAŞI and Z. Dursunkaya, “MODELING OF TWO-DIMENSIONAL SOLIDIFICATION OF A FINITE CYLINDER,” ISI BILIMI VE TEKNIGI DERGISI-JOURNAL OF THERMAL SCIENCE AND TECHNOLOGY, pp. 61–68, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/52608.