Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Analysis of Transient Laminar Forced Convection of Nanofluids in Circular Channels
Date
2012-11-15
Author
Sert, İsmail Ozan
Sezer Uzol, Nilay
Güvenç Yazıcıoğlu, Almıla
Kakaç, Sadık
Metadata
Show full item record
Item Usage Stats
261
views
0
downloads
Cite This
In this study, forced convection heat transfer Characteristics of nanofluids are investigated by numerical analysis of incompressible transient laminar flow in a circular duct under step change in wall temperature and wall heat flux. The thermal responses of the system are obtained by solving energy equation under both transient and steady-state conditions for hydrodynamically fully developed flow. In the analyses, temperature dependent thermo-physical properties are also considered. In the numerical analysis, Al2O3/water nanofluid is assumed as a homogenous single-phase fluid. For the effective thermal conductivity of nanofluids, Hamilton-Crosser model is used together with a model for Brownian motion in the analysis which takes the effects of temperature and the particle diameter into account. Temperature distributions across the tube for a step jump of wall temperature and also wall heat flux are obtained for various times during the transient calculations at a given location for a constant value of Peclet number and a particle diameter. Variations of thermal conductivity in turn, heat transfer enhancement is obtained at various times as a function of nanoparticle volume fractions, at a given nanoparticle diameter and Peclet number. The results are given under transient and steady-state conditions; steady-state conditions are obtained at larger times and enhancements are found by comparison to the base fluid heat transfer coefficient under the same conditions.
Subject Keywords
Thermal-Conductivity
,
Heat-Transfer
URI
http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=1751496&resultClick=1
https://hdl.handle.net/11511/71019
https://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=7&SID=D4BZSUHixVgbAUxXewd&page=1&doc=1
Conference Name
ASME International Mechanical Engineering Congress and Exposition, (2012)
Collections
Department of Aerospace Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
A numerical study of single-phase convective heat transfer in microtubes for slip flow
Sun, Wei; Kakac, Sadik; Yazicioglu, Almila G. (2007-11-01)
The steady-state convective heat transfer for laminar, two-dimensional, incompressible rarefied gas flow in the thermal entrance region of a tube under constant wall temperature, constant wall heat flux, and linear variation of wall temperature boundary conditions are investigated by the finite-volume finite difference scheme with slip flow and temperature jump conditions. Viscous heating is also included, and the solutions are compared with theoretical results where viscous heating has been neglected. For ...
NUMERICAL ANALYSIS OF CONVECTIVE HEAT TRANSFER OF NANOFLUIDS FOR LAMINAR FLOW IN A CIRCULAR TUBE
Kirez, Oguz; Güvenç Yazıcıoğlu, Almıla; KAKAÇ, SADIK (2012-11-15)
In this study, a numerical analysis of heat transfer enhancement of Alumina/water nanofluid in a steady-state, single-phase, laminar flow in a circular duct is presented for the case of constant wall heat flux and constant wall temperature boundary conditions. The analysis is performed with a newly suggested model (Corcione) for effective thermal conductivity and viscosity, which show the effects of temperature and nanoparticle diameter. The results for Nusselt number and heat transfer enhancement are prese...
Numerical analysis of transient laminar forced convection of nanofluids in circular ducts
Sert, Ismail Ozan; Sezer Uzol, Nilay; Kakaç, Sadik (2013-10-01)
In this study, forced convection heat transfer characteristics of nanofluids are investigated by numerical analysis of incompressible transient laminar flow in a circular duct under step change in wall temperature and wall heat flux. The thermal responses of the system are obtained by solving energy equation under both transient and steady-state conditions for hydro-dynamically fully-developed flow. In the analyses, temperature dependent thermo-physical properties are also considered. In the numerical analy...
EXPERIMENTAL AND NUMERICAL STUDY ON HEAT TRANSFER PERFORMANCE OF SQUARE, CYLINDRICAL AND PLATE HEAT SINKS IN EXTERNAL TRANSITION FLOW REGIME
İnci, Aykut Barış; Bayer, Özgür (2019-01-01)
Geometrical optimization of heat sinks with square, cylindrical and plate fins for heat transfer increase is numerically analyzed in transition regime external flow. The relations between the thermal characteristics of fins and boundary conditions such as free-stream velocity are investigated. Experimental studies are performed by using manufacturable fins to validate the numerical model. Heat transfer correlations are derived in order to determine average heat transfer coefficients over a certain range of ...
Analysis of single phase convective heat transfer in microtubes and microchannels
Çetin, Barbaros; Yüncü, Hafit; Department of Mechanical Engineering (2005)
Heat transfer analysis of two-dimensional, incompressible, constant property, hydrodynamically developed, thermally developing, single phase laminar flow in microtubes and microchannels between parallel plates with negligible axial conduction is performed for constant wall temperature and constant wall heat flux thermal boundary conditions for slip flow regime. Fully developed velocity profile is determined analytically, and energy equation is solved by using finite difference method for both of the geometr...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
İ. O. Sert, N. Sezer Uzol, A. Güvenç Yazıcıoğlu, and S. Kakaç, “Analysis of Transient Laminar Forced Convection of Nanofluids in Circular Channels,” presented at the ASME International Mechanical Engineering Congress and Exposition, (2012), Texas, United States, 2012, Accessed: 00, 2021. [Online]. Available: http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=1751496&resultClick=1.