UNCERTAINTY AND A NEW MEASURE FOR CLASSIFICATION UNCERTAINTY

2012-08-29
Damgacioglu, Haluk
İyigün, Cem
Ben-Israel and Iyigun ([1] and [2]) presents a new clustering method which is probabilistic distance clustering (P-D Clustering). In this method, the probability of assignment to cluster for each point is inversely proportional to distances between data point and centers of clusters according to given number of clusters and their centers. In this paper, we study on new uncertainty measure for classification using the assignment probabilities of P-D Clustering. Moreover, the relationship of the new measure with Kullback - Liebner divergence is discussed.
10th International Conference on Fuzzy Logic and Intelligent Technologies in Nuclear Science (FLINS)

Suggestions

Out-of-Sample Generalizations for Supervised Manifold Learning for Classification
Vural, Elif (2016-03-01)
Supervised manifold learning methods for data classification map high-dimensional data samples to a lower dimensional domain in a structure-preserving way while increasing the separation between different classes. Most manifold learning methods compute the embedding only of the initially available data; however, the generalization of the embedding to novel points, i.e., the out-of-sample extension problem, becomes especially important in classification applications. In this paper, we propose a semi-supervis...
Frequency estimation of a single real-valued sinusoid: An invariant function approach
Candan, Çağatay; Çelebi, Utku (2021-08-01)
An invariant function approach for the computationally efficient (non-iterative and gridless) maximum likelihood (ML) estimation of unknown parameters is applied on the real-valued sinusoid frequency estimation problem. The main attraction point of the approach is its potential to yield a ML-like performance at a significantly reduced computational load with respect to conventional ML estimator that requires repeated evaluation of an objective function or numerical search routines. The numerical results ind...
Tree-structured Data Clustering
Dinler, Derya; Tural, Mustafa Kemal; Özdemirel, Nur Evin (null; 2018-11-04)
Tree-structured Data ClusteringWe consider a clustering problem in which data objects are rooted trees withunweighted or weighted edges and propose a k-means based algorithm whichrepeats assignment and update steps until convergence. The assignment steputilizes Vertex Edge Overlap to assign each data object to the most similarcentroid. In the update step, each centroid is updated by considering the dataobjects assigned to it. For the unweighted edges case, we propose a NonlinearInteger Programming (NIP) for...
Tree-structured Data Clustering
Dinler, Derya; Tural, Mustafa Kemal; Özdemirel, Nur Evin (2019-11-04)
Tree-structured Data ClusteringWe consider a clustering problem in which data objects are rooted trees withunweighted or weighted edges and propose a k-means based algorithm whichrepeats assignment and update steps until convergence. The assignment steputilizes Vertex Edge Overlap to assign each data object to the most similarcentroid. In the update step, each centroid is updated by considering the dataobjects assigned to it. For the unweighted edges case, we propose a NonlinearInteger Programming (NIP) for...
Similarity matrix framework for data from union of subspaces
Aldroubi, Akram; Sekmen, Ali; Koku, Ahmet Buğra; Cakmak, Ahmet Faruk (2018-09-01)
This paper presents a framework for finding similarity matrices for the segmentation of data W = [w(1)...w(N)] subset of R-D drawn from a union U = boolean OR(M)(i=1) S-i, of independent subspaces {S-i}(i=1)(M), of dimensions {d(i)}(i=1)(M). It is shown that any factorization of W = BP, where columns of B form a basis for data W and they also come from U, can be used to produce a similarity matrix Xi w. In other words, Xi w(i, j) not equal 0, when the columns w(i) and w(j) of W come from the same subspace, ...
Citation Formats
H. Damgacioglu and C. İyigün, “UNCERTAINTY AND A NEW MEASURE FOR CLASSIFICATION UNCERTAINTY,” Istanbul, TURKEY, 2012, vol. 7, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/52979.