Determination of the position and orientation of rigid bodies by using single camera images

Kilic, Varlik
Platin, Bülent Emre
This study aims to present a new reconstruction method which enables reconstruction of 3D configuration of an object using single camera images. A secondary planar target which is a white circle with two internal black spots, one is located at the center, is used. The proposed reconstruction method is monocular and non-iterative. The elliptical contour and spot center locations of the target in an image is used to determine the 6-DOF configuration parameters of an object, on which the secondary target is rigidly attached. These six parameters represent the three basic translations and three basic rotations of the object with respect to camera coordinate system. The reconstruction algorithm is implemented and tested using an experimental setup composed of a digital imaging system and 6-DOF positioning unit. 512x512 pixels grayscale images are used to determine position and orientation of the secondary target with respect to the camera, which are controlled through the positioning unit. Theoretical accuracy limits of the reconstruction algorithm are evaluated and presented.
World Congress on Engineering 2007


Experimental study on the sensitivity of autocalibration to projective camera model parameters
Hassanpour, Reza; Atalay, Mehmet Volkan (2006-04-01)
Existing methods of 3-D object modeling and recovering 3-D data from uncalibrated 2-D images are subject to errors introduced by assumptions about camera parameters and mismatches in finding point pairs in the images. In this study, we experimentally evaluate the effect of each of these assumptions together with the inaccuracy in the measurements in the images. Sensitivity of reconstruction errors to inaccuracies in the estimation of camera parameters and mismatches due to noise in input data is measured us...
Reconstruction of three dimensional models from real images
Yilmaz, U; Mulayim, A; Atalay, Mehmet Volkan (2002-06-21)
An image based model reconstruction system is described. Real images of a rigid object acquired under a simple but controlled environment are used to recover the three dimensional geometry and the surface appearance. Based on a multi-image calibration method, an algorithm to extract the rotation axis of a turn-table has been developed. Furthermore, this can be extended to estimate robustly the initial bounding volume of the object to be modeled The coarse volume obtained, is then carved using a stereo corre...
Iterative Photometric Stereo with Shadow and Specular Region Detection for 3D Reconstruction
BUYUKATALAY, Soner; BİRGÜL, ÖZLEM; Halıcı, Uğur (2009-04-11)
Photometric stereo is a 3D reconstruction algorithm that uses the images of an object with different light conditions and its performance is affected by the shades and specular regions in the images. Especially, the use of Lambert reflectance model results in errors in the reconstructed surface normals. In this study an iterative approach was used to generate masks corresponding to these problematic regions and the surface normals were reconstructed using a Lambert based algorithm that excludes these region...
Analysis of vision aided inertial navigation systems
Yuksel, Yigiter; Kaygisiz, H. Burak (2006-04-19)
We propose in this paper a method to integrate inertial navigation systems with electro optic imaging devices. Our method is based on updating the inertial navigation system in a Kalman filter structure using line of sight measurements obtained from a camera. The proposed method is analyzed based on a UAV scenario generated by our trajectory simulator and the results are provided here. The results show that even a single vision aid can improve the performance of inertial navigation system.
Efficient algorithms for convolutional inverse problems in multidimensional imaging
Doğan, Didem; Öktem, Figen S.; Department of Electrical and Electronics Engineering (2020)
Computational imaging is the process of indirectly forming images from measurements using image reconstruction algorithms that solve inverse problems. In many inverse problems in multidimensional imaging such as spectral and depth imaging, the measurements are in the form of superimposed convolutions related to the unknown image. In this thesis, we first provide a general formulation for these problems named as convolutional inverse problems, and then develop fast and efficient image reconstruction algorith...
Citation Formats
V. Kilic and B. E. Platin, “Determination of the position and orientation of rigid bodies by using single camera images,” presented at the World Congress on Engineering 2007, London, ENGLAND, 2007, Accessed: 00, 2020. [Online]. Available: