Demirci, Gokhan
Karakaya, İshak
An experimental electrolytic magnesium production cell was designed to remove chlorine gas from the electrolyte rapidly and demonstrate the beneficial effects of reduced chlorine dissolution into the molten salt electrolyte. The back reaction that is the main cause of current losses in electrolytic magnesium production was reduced as a result of effective separation of electrode products and decreased contact time of chlorine gas with the electrolyte. Moreover, smaller inter electrode distances employed and lower chlorine gas present on the anode surface made it possible to work at low cell voltages. Electrolytic cell was tested at different current densities. Energy consumption of 7.0 kWh kg(-1) Mg that is slightly above the theoretical minimum, 6.2 kWh kg(-1) Mg, at 0.68 Acm(-2) anodic current density was achieved for a MgCl2/NaCl/KCl electrolyte.


Electrolytic magnesium production using coaxial electrodes
Demirci, Gökhan; Karakaya, İshak; Department of Metallurgical and Materials Engineering (2006)
Main reason for the current losses in electrolytic magnesium production is the reaction between electrode products. Present study was devoted to effective separation of chlorine gas from the electrolysis environment by a new cell design and thus reducing the extent of back reaction between magnesium and chlorine to decrease energy consumption values. The new cell design was tested by changing temperature, cathode surface, current density, anode cathode distance and electrolyte composition. Both the voltages...
Electrochemical Formation of Alloys of Scandium in Molten Salts
polat, çağlar; ERDOĞAN, METEHAN; iplikçioğlu, Safder; Karakaya, İshak (2018-02-01)
The Al-Sc alloy formation by the reduction of Sc containing compounds in a molten salt containing CaCl2 was investigated in this study. The preliminary tests revealed that Al3Sc intermetallic, which gives the superior properties to this alloy, was successfully formed and distributed homogeneously throughout the Al matrix. XRD, SEM-EDS and optical microscopy analyses were used to confirm the results.
Catalytic conversion of methane to methanol on Cu-SSZ-13 using N2O as oxidant
İpek Torun, Bahar (2016-01-01)
Direct catalytic methanol production from methane is achieved on Cu-SSZ-13 zeolite catalysts using N2O as the oxidant. The methanol production rate on Cu-SSZ-13 (on a per gram basis) was more than twice the rate on Cu-mordenite and more than four times the rate on Cu-ZSM-5.
Sun, Z. P.; Evis, Zafer (2009-01-23)
Pure and Mg(2+) & F(-) doped nano hydroxyapatites (HA) were synthesized by a precipitation method and sintered at 1100 degrees C to investigate their densification and structure. Different amounts of Mg(2+) and F ions were doped in to HAs. X-ray diffraction was used to identify the presence of phases And lattice parameters of HA and tri-calcium phosphates (TCP) present in the samples. Densification of HA was improved by the addition of these ions. In most of the doped samples, beta-tri-calcium phosphate (TC...
Highly Efficient Room Temperature Synthesis of Silver-Doped Zinc Oxide (ZnO:Ag) Nanoparticles: Structural, Optical, and Photocatalytic Properties
Yildirim, Ozlem Altintas; Ünalan, Hüsnü Emrah; Durucan, Caner (Wiley, 2013-03-01)
Synthesis of silver-doped zinc oxide (ZnO:Ag) nanoparticles through precipitation method has been reported. The synthesis was conducted at room temperature and no subsequent thermal treatment was applied. ZnO nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), fourier transmission infrared spectroscopy (FTIR), and ultraviolet-visible (UVVis) spectroscopy. Detailed crystallographic investigation was accomplished through ...
Citation Formats
G. Demirci and İ. Karakaya, “MOLTEN SALT ELECTROLYSIS OF MgCl2 IN A CELL WITH RAPID CHLORINE REMOVAL FEATURE,” 2012, Accessed: 00, 2020. [Online]. Available: