Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Approximate Analytical Solutions for the Weight Optimization Problems of CI and ICI
Date
2017-10-12
Author
Orguner, Umut
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
187
views
0
downloads
Cite This
Approximate analytical formulae are proposed for the solutions of the weight optimization problems involved in Covariance Intersection (CI) and Inverse Covariance Intersection (ICI). The methodology used for obtaining the analytic approximations boils down to using just two Newton iterations with the initial weight value 1/2. The simulation results show that quite acceptable root-mean-square (RMS) error levels are achievable with the proposed approximate analytical weights with less computations compared to what would be required when numerical optimization with a high termination tolerance is used, which can be critical for applications with very limited computational resources.
Subject Keywords
Covariance intersection
,
Data fusion
URI
https://hdl.handle.net/11511/53658
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Exact solutions of the Schrodinger equation via Laplace transform approach: pseudoharmonic potential and Mie-type potentials
Arda, Altug; Sever, Ramazan (Springer Science and Business Media LLC, 2012-04-01)
Exact bound state solutions and corresponding normalized eigenfunctions of the radial Schrodinger equation are studied for the pseudoharmonic and Mie-type potentials by using the Laplace transform approach. The analytical results are obtained and seen that they are the same with the ones obtained before. The energy eigenvalues of the inverse square plus square potential and three-dimensional harmonic oscillator are given as special cases. It is shown the variation of the first six normalized wave-functions ...
Exact Solutions of Some Partial Differential Equations Using the Modified Differential Transform Method
Cansu Kurt, Ümmügülsüm; Ozkan, Ozan (2018-03-01)
In this paper, we present the modification of the differential transform method by using Laplace transform and Pade approximation to obtain closed form solutions of linear and nonlinear partial differential equations. Some illustrative examples are given to demonstrate the activeness of the proposed technique. The obtained results ensure that this modified method is capable of solving a large number of linear and nonlinear PDEs that have wide application in science and engineering. It solves the drawbacks i...
Continuous optimization approaches for clustering via minimum sum of squares
Akteke-Ozturk, Basak; Weber, Gerhard Wilhelm; Kropat, Erik (2008-05-23)
In this paper, we survey the usage of semidefinite programming (SDP), and nonsmooth optimization approaches for solving the minimum sum of squares problem which is of fundamental importance in clustering. We point out that the main clustering idea of support vector clustering (SVC) method could be interpreted as a minimum sum of squares problem and explain the derivation of semidefinite programming and a nonsmooth optimization formulation for the minimum sum of squares problem. We compare the numerical resu...
Differential constrains, recursion operators, and logical integrability
Satir, A (Springer Science and Business Media LLC, 1997-10-01)
Differential constraints compatible with the linearized equations of partial differential equations are examined. Recursion operators are obtained by integrating the differential constraints.
Evaluation of Hypersingular Integrals on Non-planar Surfaces
Selcuk, Gokhun; Koç, Seyit Sencer (2014-05-16)
Solving electric field integral equation (EFIE) with Nystrom method requires accurate evaluation of hypersingular surface integrals since this method does not use divergence conforming basis and testing functions. The success of the method also depends on accurate representation of non-planar characteristics of the scattering object. In this study Hadamard finite part interpretation is used to evaluate hypersingular integrals over non-planar surfaces, which are represented by their Taylor series expansions....
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
U. Orguner, “Approximate Analytical Solutions for the Weight Optimization Problems of CI and ICI,” 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/53658.