Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A Simulation of the Quenching Process for Predicting Temperature, Microstructure and Residual Stresses
Date
2010-02-01
Author
Simsir, Caner
Gür, Cemil Hakan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
155
views
0
downloads
Cite This
A finite element model capable of predicting the temperature history, evolution of microstructure and residual stresses in the quenching process is presented. Proposed model was integrated into Msc. Marc software via user subroutines. Verification of the model was performed by X-ray diffraction residual stress measurements on a series of steel cylinders quenched. (C)2010 Journal of Mechanical Engineering. All rights reserved.
Subject Keywords
Steel quenching
,
Simulation
,
Residual stress
,
Microstructure
,
Finite element method
URI
https://hdl.handle.net/11511/53680
Journal
STROJNISKI VESTNIK-JOURNAL OF MECHANICAL ENGINEERING
Collections
Department of Metallurgical and Materials Engineering, Article
Suggestions
OpenMETU
Core
A FEM based framework for simulation of thermal treatments: Application to steel quenching
Şimşir, Caner; Gür, Cemil Hakan (2008-12-01)
During thermal treatments, materials are usually subjected to continuous heating and cooling cycles during which microstructural evolution and mechanical interactions occur simultaneously at different length and time scales. Modeling of these processes necessitates dealing with inherent complexities such as phase transformations, large material property variations, complex couplings and boundary conditions. In this study, a mathematical framework based on finite element method (FEM) capable of predicting te...
A mathematical framework for simulation of thermal processing of materials: Application to steel quenching
Şimşir, Caner; Gür, Cemil Hakan (2008-08-12)
During thermal processing, parts are usually subjected to continuous heating and cooling cycles during which microstructural and mechanical evolutions occur simultaneously at different length and time scales. Modeling of these processes necessitates dealing with inherent complexities such as large material property variations, complex couplings and domains, combined heat and mass transfer mechanisms, phase transformations, and complex boundary conditions. In this study, a finite element method based mathema...
Finite element simulation of quench hardening
Gür, Cemil Hakan (1996-07-01)
In this study, an efficient finite element model for predicting the temperature field, volume fraction of phases and the evolution of internal stresses up to the residual stress states during quenching of axisymmetrical steel components is developed and implemented. The temperature distribution is determined by considering heat losses to the quenching medium as well as latent heat due to phase transformations. Phase transformations are modelled by discretizing the cooling cuves in a succession of isothermal...
A numerical study on magneto-hydrodynamic mixed convection flow
Bozkaya, Canan (2014-01-01)
This paper, describes a study conducted to numerically investigate the two-dimensional, steady, laminar, magneto-hydrodynamic mixed convection flow and heat transfer characteristics in a lid-driven enclosure beneath an externally applied magnetic field. A solid square block is placed inside the cavity. The governing equations in the form of a stream function-vorticity-temperature formulation are solved numerically using the dual reciprocity boundary element method with constant elements. Treatment of nonlin...
A robust algorithm for configurational-force-driven brittle crack propagation with R-adaptive mesh alignment
MIEHE, CHRISTIAN; Gürses, Ercan (2007-10-08)
The paper considers a variational formulation of brittle fracture in elastic solids and proposes a numerical implementation by a finite element method. On the theoretical side, we outline a consistent thermodynamic framework for crack propagation in an elastic solid. It is shown that both the elastic equilibrium response as well as the local crack evolution follow in a natural format by exploitation of a global Clausius-Planck inequality in the sense of Coleman's method. Here, the canonical direction of the...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
C. Simsir and C. H. Gür, “A Simulation of the Quenching Process for Predicting Temperature, Microstructure and Residual Stresses,”
STROJNISKI VESTNIK-JOURNAL OF MECHANICAL ENGINEERING
, pp. 93–103, 2010, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/53680.