Finite element simulation of quench hardening

In this study, an efficient finite element model for predicting the temperature field, volume fraction of phases and the evolution of internal stresses up to the residual stress states during quenching of axisymmetrical steel components is developed and implemented. The temperature distribution is determined by considering heat losses to the quenching medium as well as latent heat due to phase transformations. Phase transformations are modelled by discretizing the cooling cuves in a succession of isothermal steps and using the IT-diagrams. For diffusional transformations both Scheil's additivity method and Johnson-Mehl-Avrami equation are used, while Koistinen-Marburger equation is employed for martensitic transformation. Internal stresses are determined by a small strain elasto-plastic analysis using Prandtl-Reuss constitutive equations. Considering long cylinders, a generalized plane strain condition is assumed. The computational model is verified by several experimental measurements and by comparison with other known numerical results. Case studies are performed with St50, Ck45 and C60 type of solid and hollow steel components. The complete data and result sets provided for the verification examples establish a basis for benchmark problems in this field.


Kupnik, Mario; Ergun, Arif S.; Yaralioglu, Goksen G.; Bayram, Barış; Oralkan, Oemer; Wong, Serena H.; Lin, Dersong; Khuri-Yakub, Butrus T. (2006-01-01)
The accurate prediction of the static operation point of capacitive micromachined ultrasonic transducer (CMUT) membranes is essential for dynamic performance modeling, device design, and device fabrication. We evaluate whether fabrication-related stress effects in CMUT cells cause significant deviations observed between membrane deflection measurements and calculations. Our finite element analysis (FEA) considers the thermal structural interaction associated with the temperature stress history during device...
On the elastic-plastic deformation of a centrally heated cylinder exhibiting linear hardening
Gulgec, M; Orcan, Y (1999-01-01)
A closed-form solution of the elastic-plastic deformation of a cylinder with uniform temperature inside its cylindrical core and zero surface temperature is presented for a linearly strain hardening material. The analysis is based on Tresca's yield condition and its associated flow rule. The effect of hardening on the expansion of plastic regions and on the distribution of stress is displayed graphically.
On the SmCo Dimer: A Detailed Density Functional Theory Analysis
Oymak, Hueseyin; Erkoç, Şakir (American Chemical Society (ACS), 2010-02-04)
Making use of 21 different exchange-correlation functionals, we performed density functional theory calculations, within the effective core potential level, to investigate some spectroscopic and electronic features of the SmCo dimer in its ground state. A particular emphasis was placed on the (spin) multiplicity of SmCo. Most of the functionals under discussion unanimously agreed that the multiplicity of SmCo should be 10. It was observed that the nature of interaction between Sm and Co atoms to form the Sm...
A Simulation of the Quenching Process for Predicting Temperature, Microstructure and Residual Stresses
Simsir, Caner; Gür, Cemil Hakan (2010-02-01)
A finite element model capable of predicting the temperature history, evolution of microstructure and residual stresses in the quenching process is presented. Proposed model was integrated into Msc. Marc software via user subroutines. Verification of the model was performed by X-ray diffraction residual stress measurements on a series of steel cylinders quenched. (C)2010 Journal of Mechanical Engineering. All rights reserved.
Finite element modeling of scattering from objects in rectangular waveguides
Gülbaş, Hüseyin; Kuzuoğlu, Mustafa; Özlem, Özgün; Department of Electrical and Electronics Engineering (2017)
Numerical analysis of scattering parameters of split ring resonators which are one of the microwave circuit elements is performed by the Finite Element Method in this thesis. The fundamentals of the model and analysis method will be discussed firstly. Afterwards, the basics of Finite Element Method including weak variational form of the wave equation, 3D formulations and application to scattering parameters will be presented. The concepts of Perfectly Matched Layer and resonators will be examined in detail....
Citation Formats
C. H. Gür, “Finite element simulation of quench hardening,” STEEL RESEARCH, pp. 298–306, 1996, Accessed: 00, 2020. [Online]. Available: